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ABSTRACT

For the control of discrete event systems, the notion of directed control refines that

of supervisory control. A directed controller is one that selects at most one controllable

event to be enabled at any state (without disabling any uncontrollable event), which is

in fact how a discrete event control is implemented. In contrast, a supervisory controller

computes a maximal allowable set of controllable events at each state, leaving undecided

exactly which one is to be enabled.

We model discrete event systems using the automaton formalism. Under directed

control, our first goal is to achieve logical correctness of the controlled system behavior

as specified by safety and nonblocking. Subsequently we address the best performance

issue by providing an optimization based framework. The optimization task is to direct

a system in such a way that regardless of the history of evolution, it accomplishes a

pending task in a minimal cost.

In a state-based setting, we formulate and study the existence and synthesis problems

with the above objectives. We first show that the existence and the synthesis of a safe

and nonblocking directed controller are both solvable in polynomial complexity. Then

we present a novel approach with polynomial complexity for the synthesis (and the

existence) of an optimal director, thus providing a complete solution to the problems in

study.
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CHAPTER 1. OVERVIEW

1.1 Introduction - From supervisor to director

For the control of discrete event systems, the notion of directed control refines that

of supervisory control. A directed controller, simply referred to as director, is one that

selects at most one controllable event to be enabled at any state (without disabling any

uncontrollable event), which is in fact how a discrete event control is implemented. This

is in contrast to supervisory control [21][15][8], where a supervisory controller, simply

referred to as supervisor, computes a maximal allowable set of controllable events at

each state, leaving undecided exactly which one is to be enabled.

Most prior work on logical control of discrete event systems deals with supervisory

control. Only a few exceptions exist, e.g., the notion of “forcing control” [2][13][5][18]. A

problem with the notion of forcing control is that through forcing, one is able to preempt

the other events including any feasible uncontrollable events. In the timed setting, the

forcing is also able to preempt the “tick” transition of an underlying discrete clock.

A director, on the other hand, does not preempt feasible uncontrollable events, rather

restricts the number of enabled controllable events to be at most one. The feasible

uncontrollable events remain enabled. Another exception can be found in the framework

of prioritized synchronization based supervisory control [14]. Under that framework,

there is an added provision of driven events, which are events that a supervisor can

execute with or without the participation of the system under control.

The design of a supervisor is meaningful for applications in which the plant is an
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autonomous generator of controllable events. However for many applications, the plant

is an executor of controllable events, i.e., it does not autonomously generate such events,

rather executes them when commanded by a controller.

In a transportation system, for example, a supervisory control action will specify a

maximal set of permissible routes for a vehicle. However, what is more appropriate is

a directed control action commanding the vehicle to follow a specific route. Similarly,

while it may be legal to permit a certain conveyor motor to rotate forward as well as

reverse, in an application the direction of rotation must be specified.

So for systems that are executor of events, it is more meaningful to issue a command

consisting of at most one possible controllable event, rather than a set of controllable

events as issued by a supervisor.

In [3], an antenna rotor control system (ARCS) has been designed where a controller

enforces the given safety, liveness, and real-time control constraints, while selecting a

single controllable event at each state of the system, i.e., the controller is a director. The

controllable event is selected from the ones allowed by a maximally permissive supervisor,

but on an ad hoc basis. Similar ad hoc selection of controllable events is made in another

application consisting of an educational assembly line [9]. In [11], the authors pointed

out some main issues facing the implementation of supervisors on programmable logic

controllers (PLCs), one of which is the need to choose one controllable event among

alternatives. The suggested solution, however, is either making the choice explicitly at

the compile time, or letting a PLC choose one based on the ordering of its rungs at the

run time.

The problem of computing a director can also be viewed as a generalization of the

classical planning problem considered in the AI community [12][10], where the objective

is to compute a plan, which is a map that selects control actions at each state, so as to

steer the system from any of the given initial states to the desired final or goal states. In

that setting, the notion of uncontrollability of events is missing, so our setting of directed
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control is more general. Thus the approach developed in the work extends the scope of

AI-planning problems to the settings where uncontrollable events are also present.

1.2 Objectives - From logic correctness to best performance

We model a discrete event system to be controlled, called a plant, using the au-

tomaton formalism. The control goal under directed control can be the same as that

in the setting of supervisory control, e.g., logical correctness as specified by safety and

nonblocking. We refer to safety as the system property that something “bad” will never

happen, i.e., any undesirable or illegal state will never be reached from the initial state

or other accessible states under directed control. In contrast, we refer to nonblocking as

the system property that something “good” will eventually happen, i.e., any accessible

state in the directed controlled plant, or simply directed plant, is extendable to a marked

or final state.

While it is possible to arbitrarily select one of the controllable events among the ones

enabled by a supervisor to “extract” a director, such an ad hoc selection can lead to

blocking, i.e., a generated trace of the directed plant is not extendable to a marked or

final state. For example, consider a plant under the control of a supervisor shown in

Figure 1.1(a). An arbitrary disablement of all but one controllable event to obtain a

director may result in blocking, as shown in Figure 1.1(b). On the other hand, another

way of disabling all but one controllable event results in a nonblocking directed plant,

as shown in Figure 1.1(c). Thus it is clear that one needs an algorithmic approach to

search for a director.

After a system has been controlled so as to ensure proper behaviors, it is natural

and logical to address the best performance issue. We formulate an optimization based

framework for such an objective. Note that there may be many controls that are able to

guarantee the proper system behavior whereas usually only select few, if not only one,
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1 32

(a) Supervised plant

(b) Blocking directed plant

1 32

(c) Nonblocking directed plant

1 32

Figure 1.1 From supervisor to director

is able to achieve the optimality.

Under such a framework, we define a cost associated with each event that is a function

of the trace it follows. In practice, this cost will typically depend on a bounded history of

executed events. For an uncontrollable event, this cost represents the cost of executing

the event and the payoff of reaching the resulting state, whereas for a controllable event,

this represents the cost of executing the event and the payoff of reaching the resulting

state, together with the cost of disabling other feasible controllable events. Thus a single

cost function is able to capture both the “path cost” and the “control cost” [23][24].

The cost function can represent completion time, production cost, etc.

The optimization task is to direct a system in such a way that regardless of the

history of evolution, it accomplishes a pending task in a minimal cost. In the absence

of uncontrollable events, this amounts to finding the shortest cost path between any

state and its nearest reachable marked states. In the presence of uncontrollable events,

control is exercised in a manner that the worst cost over all surviving paths between any

state and its nearest reachable marked states is minimized.

In a flexible manufacturing system, for example, products need to be assembled in

an optimal way using different permutations of the resources available. The inherent
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uncertainties associated with the manufacturing process such as breakdowns can be

modeled as uncontrollable events, and the framework developed here can be used to

obtain an optimal control strategy.

Note that the director synthesized for logic correctness can be seen as a special

case under such a framework. In other words, an optimal director should be safe and

nonblocking.

1.3 Results - From existence to synthesis

Given a plant, with control objectives described above, we proceed to determine

whether there exists a director satisfying our specifications, and if yes, then how to

synthesize one.

Without loss in generality, we formulate and study the existence and synthesis prob-

lems in a state-based setting. In this setting the search space for nonblocking directors

and optimal directors are both exponential in the number of plant states. Thus the

formulated problems are indeed solvable. An exhaustive search, however, would have a

complexity exponential in the size of plant. So computationally efficient approaches are

desired.

We will first show that a safe and nonblocking director exists if and only if a safe and

nonblocking supervisor exists, thereby proving the polynomiality of verifying existence.

(Recall that existence of a safe and nonblocking supervisor is polynomially verifiable.)

Then we will provide a set of algorithms of polynomial complexity to compute a safe

and nonblocking director (whenever one exists).

Next we will show a necessary and sufficient condition for the existence of an optimal

director. For systems that are cycle-free, we provide an algorithm of polynomial com-

plexity to compute an optimal director, which is also proved to be dynamic-programming

optimal.
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Last we will present a novel approach for the synthesis (and the existence) of an

optimal director for general plants. i.e., plants with or without cycles, thus providing a

complete solution to the above problems, with the complexity of the approach remains

polynomial in the size of plant.
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CHAPTER 2. NOTION OF DIRECTED CONTROL

2.1 Notation and preliminaries

A DES to be controlled, called a plant, is modeled as an automaton, denoted as

G := (X, Σ, α, x0, Xm), where X denotes the set of states, Σ denotes the finite set of

events, α : X × Σ → X denotes the partial deterministic state transition function and

is extended in a natural way to α : X × Σ∗ → X, x0 ∈ X denotes the initial state, and

Xm ⊆ X denotes the set of marked states.

For x ∈ X, we use Σ(x) ⊆ Σ to denote the set of events defined at x, i.e.,

Σ(x) := {σ ∈ Σ | α(x, σ) is defined}

Σ∗ is used to denote the set of all finite-length sequences of events, called traces,

which includes the zero-length trace ε. A subset of Σ∗ is called a language. The generated

language of G is defined as,

L(G) := {s ∈ Σ∗ | α(x0, s) is defined}

whereas the marked language of G is defined as,

Lm(G) := {s ∈ L(G) | α(x0, s) ∈ Xm}

Xt := {x ∈ X | Σ(x) = ∅} is used to denote the set of all terminating states and

Xtm := Xt ∩ Xm is used to denote the set of all terminating marked states. We use

Lt(G) := {s ∈ L(G) | α(x0, s) ∈ Xt} to denote the set of terminating traces of G.
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X(G) is used to denote the state set of G. A state x ∈ X is called accessible if there

exists a trace s ∈ Σ∗ such that x = α(x0, s). A state x ∈ X is called coaccessible to

Xm, or simply coaccessible, if there exists a trace s ∈ Σ∗ such that α(x, s) ∈ Xm. We

denote the operation to delete the states in G that are not accessible (resp. coaccessible)

as Ac(G) (resp. CoAc(G)). An automaton G is called accessible (resp. coaccessible)

if G = Ac(G) (resp. G = CoAc(G)). An automaton G that is both accessible and

coaccessible is said to be trim.

For a language K ⊆ Σ∗, the notation pr(K), called the prefix-closure of K, denotes

the set of all prefixes of traces in K. K is said to be prefix-closed if K = pr(K). We

use K\s to denote the set of traces that occur in the language K after the trace s has

occurred, i.e., K\s := {t ∈ Σ∗ | st ∈ K}.
The notation s ≤ t is used to denote that the trace s ∈ Σ∗ is a prefix of the trace

t ∈ Σ∗. When s is a proper prefix of t (i.e., s ≤ t and s 6= t), it is denoted as s < t.

For control purposes, the event set of G is partitioned into the set of controllable

events Σc ⊆ Σ and the set of uncontrollable events Σu ⊆ Σ. We define, Σc(x) := Σ(x)∩Σc

and Σu(x) := Σ(x) ∩ Σu.

The uncontrollable events are generally of two kinds: disturbance inputs and sensor

outputs. An example of disturbance inputs is system failure and an example of sen-

sor outputs is change in motion detector output. Occurrence of a disturbance input is

uncertain while that of a sensor output is something can be expected. The set of un-

controllable events that are disturbance inputs is denoted as Σd ⊆ Σu. (The remaining

uncontrollable events in Σu − Σd are the sensor outputs.)

A supervisory controller is a map S : L(G) → 2Σ−Σu that determines the set of events

S(s) ⊆ (Σ − Σu) to be disabled after the occurrence of a trace s ∈ L(G). Events not

belonging to the set S(s) remain enabled at trace s. In particular, the uncontrollable

events remain enabled. The supervised plant is denoted as GS, and its generated and

marked languages are defined using:
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ε ∈ L(GS)

[s ∈ L(GS), sσ ∈ L(G), σ 6∈ S(s)] ⇔ [sσ ∈ L(GS)]

Lm(GS) := L(GS) ∩ Lm(G)

It holds that Lm(GS) ⊆ L(GS) = pr(L(GS)) 6= ∅. S is said to be nonblocking if

L(GS) ⊆ pr(Lm(GS)). Given a nonempty specification language K ⊆ Lm(G), there

exists a nonblocking supervisor if and only if K is controllable, i.e., pr(K)Σu ∩ L(G) ⊆
pr(K), and relative-closed, i.e., pr(K) ∩ Lm(G) = K.

2.2 Notion of directed control

A directed controller, or simply a director, enables at most one controllable event

following each trace. This control selection is what distinguishes a director from a

supervisor.

It should be noted that following certain traces, disabling all controllable events is

not a good option. These consist of

• Traces s ∈ Lm(G) − Lt(G) such that L(G)\s ∩ Σu = ∅. These traces are non-

terminating marked traces and not followed by any uncontrollable events (so dis-

abling all controllable events at such traces will block system from performing

future tasks), and

• Traces s ∈ L(G) such that L(G)\s ∩ Σc 6= ∅ and ∅ ⊂ L(G)\s ∩ Σu ⊆ Σd. These

traces are followed by at least one controllable event (so a control can be exercised

at such traces) while all uncontrollable events occur after the traces are distur-

bance inputs and at least one such disturbance input is present (so disabling all

controllable events will make the system wait for a disturbance input to occur in

order to evolve further).
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We use Le(G) to denote the set of traces mentioned above, i.e.,

Le(G) := {s ∈ Lm(G)− Lt(G) | L(G)\s ∩ Σu = ∅}∪

{s ∈ L(G) | (L(G)\s ∩ Σc 6= ∅) ∧ (∅ ⊂ L(G)\s ∩ Σu ⊆ Σd)}

Definition 1 A director is a map D : L(G) → 2Σc such that

∀s ∈ L(G) : |D(s)| ≤ 1 and ∀s ∈ Le(G) : |D(s)| = 1

Following the execution of a trace s ∈ L(G), the director enables at most one con-

trollable event unless the trace belongs to Le(G), in which case the director enables

exactly one controllable event. Also note that no control decision is defined with respect

to uncontrollable events; such events remain enabled. Thus the set of events enabled by

a director following a trace s ∈ L(G) is given by D(s) ∪ Σu.

The directed plant is denoted by GD, and the languages generated and marked by

the directed plant are denoted by L(GD) and Lm(GD) respectively, which are defined as

follows:

ε ∈ L(GD)

[s ∈ L(GD), σ ∈ D(s) ∪ Σu, sσ ∈ L(G)] ⇔ [sσ ∈ L(GD)]

Lm(GD) := L(GD) ∩ Lm(G)

It should be clear that pr(Lm(GD)) ⊆ L(GD). A director D is said to be nonblocking

if pr(Lm(GD)) = L(GD).

For simplicity, we will consider state-based specification and control. It is known

that a language-based specification (resp. control) can be converted to a state-based

specification (resp. control) on a suitably refined plant model. A state-based specifica-

tion for safety, for example, is given using a set of illegal states Xi ⊆ X that must never

be visited, whereas a director D is state-based if it computes control action as a function

of plant state, i.e., D : X → 2Σc .
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Definition 2 A state-based director is a map D : X → 2Σc such that

∀x ∈ X : |D(x)| ≤ 1 and ∀x ∈ Xe : |D(x)| = 1

where

Xe := {x ∈ Xm −Xt | Σu(x) = ∅} ∪ {x ∈ X | (Σc(x) 6= ∅) ∧ (∅ ⊂ Σu(x) ⊆ Σd)}

Under the control of a state-based director D, the controlled plant is a subgraph of

the plant graph, GD := (X, Σ, αD, x0, Xm), where the state-transition function is defined

as follows:

∀x ∈ X, σ ∈ Σ : αD(x, σ) :=





α(x, σ) if σ ∈ D(x) ∪ Σu and α(x, σ) is defined

undefined otherwise

For a state-based director to be nonblocking, the following must hold: if x ∈ X is

such that there exists s ∈ Σ∗ with αD(x0, s) = x, then there exists t ∈ Σ∗ such that

αD(x0, st) ∈ Xm.
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CHAPTER 3. DIRECTED CONTROL FOR SAFETY AND

NONBLOCKING

3.1 Introduction

As discussed above, the control goal under directed control can be logical correct-

ness as specified by safety and nonblocking. In this chapter, we will show how we can

achieve this goal with an algorithmic approach. We will begin with the notation and

preliminaries specific to this topic, then present a set of algorithms to verify the exis-

tence and subsequently perform the synthesis of a safe and nonblocking director in time

polynomial in the number of the plant states. Some examples will be provided to aid

the understanding of the algorithms. We will conclude this chapter with an application

example to demonstrate the results.

3.2 Notation and preliminaries

Definition 3 Given a plant G := (X, Σ, α, x0, Xm), a component (X̂, α̂) of G is a

subgraph of G satisfying X̂ ⊆ X and α̂ ⊆ α|X̂ , where α|X̂ denotes the transition

function α restricted to the domain X̂ × Σ.

The set of all possible directors for a component (X̂, α̂) is denoted as D(X̂, α̂).

Central to our algorithm for synthesizing a nonblocking director is the observation

that any given graph, including a controlled plant graph, can be partitioned into a

set of strongly-connected components (SCCs) [25], over which the given graph pos-
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sesses a tree structure. In case of a directed plant graph, the leaf nodes of such a tree

must be strongly-connected, legal, invariant, nonblocking and control-consistent compo-

nents (SLINCs) while the non-leaf nodes must be strongly-connected, legal, SLINC-

attractable and control-consistent components (SLACs). These notions are formalized

as follows.

Definition 4 A component (X̂, α̂) is called

1. strongly-connected if there exists a path lying entirely within the component be-

tween any pair of states of the component, i.e.,

∀x1, x2 ∈ X̂, ∃s ∈ Σ∗ s.t. α̂(x1, s) = x2 and ∀t ≤ s : α̂(x1, t) ∈ X̂

2. legal if there is no illegal state inside the component, i.e.,

X̂ ∩Xi = ∅.

3. control-consistent if there is at most one controllable event defined at each state

and exactly one controllable event defined at each state belongs to Xe, i.e.,

∀x ∈ X̂ : |Σα̂
c (x)| ≤ 1 and ∀x ∈ X̂ ∩Xe : |Σα̂

c (x)| = 1

where

Σα̂
c (x) := {σ ∈ Σc | α̂(x, σ) is defined}

4. nonblocking if from any state of the component, a marked state can be reached

within the component, i.e.,

∀x ∈ X̂, ∃s ∈ Σ∗ s.t. α̂(x, s) ∈ Xm and ∀t ≤ s : α̂(x, t) ∈ X̂

5. invariant if state transitions of (X̂, α̂) can be confined within X̂ under directed

control, i.e.,

α̂(X̂, Σu) ⊆ X̂ and ∀x ∈ X̂ ∩Xe : α̂(x, Σc) ∩ X̂ 6= ∅
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Otherwise, the component is called variant. We represent the set of states in X̂

violating any of the above conditions, i.e. the set of variant states, as V (X̂, α̂) ⊆ X̂.

6. Xr-attractable, where Xr is a reference state set, if there exists a component

(X̃, α̃) ⊇ (X̂, α̂) such that every state of (X̃, α̃) can reach a state of Xr over

transitions within X̃ ∪ Xr, and the state transitions of (X̃, α̃) can be confined

within X̃ ∪Xr under directed control, i.e., ∃(X̃, α̃) ⊇ (X̂, α̂) such that

(a) ∀x∈X̃, ∃s∈Σ∗ such that α̃(x, s) ∈ Xr and ∀t < s : α̃(x, t) ∈ X̃, and

(b) α̃(X̃, Σu) ⊆ X̃ ∪Xr, and

(c) ∀x ∈ X̃ ∩Xe : α̃(x, Σc) ∩ [X̃ ∪Xr] 6= ∅.

In case (X̃, α̃) can be chosen as the component (X̂, α̂) itself, (X̂, α̂) is said to be

singularly Xr-attractable. Also, the notion U((X̂, α̂), Xr) ⊆ X̂ is used to denote

the set of states in X̂ violating any of the 3 conditions in the definition of singular

Xr-attractability.

Remark 1 The notion of attraction was introduced in [6] and is generalized in the

above definition.

Definition 5 Given a component (X̂, α̂) and a reference state set Xr ⊆ X, we represent

the set of maximal sub-components of (X̂, α̂) that are

1. strongly-connected as, S(X̂, α̂);

2. strongly-connected, legal, invariant and nonblocking as, SLIN (X̂, α̂);

3. strongly-connected, legal and singularly Xr-attractable as, SLA((X̂, α̂), Xr).

Example 1 We illustrate the above concepts in Figure 3.1, where we represent illegal

states by crossing them. An edge with double arrows represents a transition on an un-

controllable event and an edge with single arrow represents a transition on a controllable

event.
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For the component (X̂, α̂) shown in Figure 3.1(a), all its maximal SCCs are encircled

in Figure 3.1(b). Figure 3.1(c) shows all maximal SCCs that are legal, invariant and

nonblocking, whereas Figure 3.1(d) shows all maximal SCCs that are legal and singularly

Xr-attractable.

Algorithmic computation of S(X̂, α̂) is well-known [25]; the algorithms to compute

SLIN (X̂, α̂) and SLA((X̂, α̂), Xr) are presented in the Appendix for reference.

3.3 Existence of nonblocking director

Given a plant G := (X, Σ, α, x0, Xm), the control goal is to find a state-based non-

blocking director D : X → 2Σc such that illegal states are never visited. It turns out

that the existence of such a director can be determined by checking the existence of a

nonblocking supervisor. Since a nonblocking supervisor exists if and only if a maximally

permissive nonblocking supervisor exists [21], we first present an algorithm to compute

such a supervisor, taken from [17]. Again the central idea is that the graph of a max-

imally permissive nonblocking supervised plant is partitionable into SCCs, over which

it possesses a tree-structure (see Figure 3.2(a)). The leaf nodes of the tree are SCCs

that are legal, invariant and nonblocking. Other SCCs are legal and attractable to leaf

nodes.

The algorithm first identifies strongly-connected, legal, invariant and nonblocking

components (SLINs) as the leaf nodes, and then iteratively searches backward to iden-

tify strongly-connected, legal and SLIN -attractable components (SLAs) for non-leaf

nodes. The iterative backward search terminates when either the root node (i.e., a

SLA/SLIN containing the initial state) is found, or no further SLAs can be added as

nodes to the tree. In the former case, a nonblocking supervisor exists, whereas in the

latter case, a nonblocking supervisor does not exist.



www.manaraa.com

16

(a)

21

87 9

1110

13 14

54 6

3

12

(b)

(c)

21

87 9

1110

13 14

54 6

3

12

21

87 9

1110

13 14

54 6

3

12

(d)

21

87 9

1110

13 14

54 6

3

12

XrXr

XrXr

(X, α)^ ^ S (X, α)^ ^

SLIN (X, α)^ ^ SLA ((X, α), Xr)^ ^

Figure 3.1 Illustration of Definition 5



www.manaraa.com

17

Algorithm 1 Given a plant graph (X, α) containing some marked and illegal states,

the following steps computes a maximally permissive nonblocking supervisor [17].

1. Compute SLIN (X,α). Let X0 denote the set of states of all those components;

k = 0.

2. (a) Compute singularly Xk-attractable region in the remainder of the plant, i.e.,

compute SLA((X − Xk, α|X−Xk
), Xk); Let X̃ denote the set of states of all

those components.

(b) Augment Xk with X̃ to get Xk+1, i.e., Xk+1 = Xk ∪ X̃.

3. Repeat Step 2 with k = k + 1 until

(a) x0 ∈ Xk, in which case a maximally permissive nonblocking supervisor is

found, or

(b) Xk+1 = Xk, in which case no nonblocking supervisor exists.

In the remainder of this section, we show that the director existence is equivalent

to the supervisor existence. We need the following lemmas to establish our existence

result.

Lemma 1 For any strongly-connected, legal, invariant and nonblocking component

(X̂, α̂), there exists one D ∈ D(X̂, α̂) such that (X̂, α̂D) is legal, invariant, nonblocking

and control-consistent.

Proof : Our proof obligation is to show there exists a director D for (X̂, α̂) such that

under the control of D, the resulting sub-component (X̂, α̂D) remains legal, invariant

and nonblocking. (Note that (X̂, α̂D) may not be strongly-connected. Also (X̂, α̂D) has

the same state space as (X̂, α̂).)

Clearly, for any D ∈ D(X̂, α̂), (X̂, α̂D) is legal and control-consistent.
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Figure 3.2 Structure of plants under control
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Next, since (X̂, α̂) is strongly-connected, we can partition X̂ into a chain of disjoint

state sets: X̂ =
⋃n

k=0 Xk, where X0 := X̂ ∩ Xm and ∀0 < k ≤ n : Xk := {x ∈ X̂ |
α̂(x, Σ) ∩ Xk−1 6= ∅}. In other words, Xk is composed of all the states that can reach

Xk−1 in one step. Note that since (X̂, α̂) is nonblocking, X0 = X̂ ∩Xm is nonempty.

For x ∈ X0, a director D enables any controllable event σ defined at x which makes

transition inside the component (X̂, α̂), i.e., α̂D(x, σ) ∈ X̂. Next for each state x ∈ Xk,

there exists at least one σ ∈ Σ such that α̂(x, σ) ∈ Xk−1. If this σ ∈ Σc, then the director

D enables it; otherwise any controllable event σ defined at x which makes transition

inside the component (X̂, α̂) can be enabled by D. In this manner, the desired (X̂, α̂D)

is obtained.

Lemma 2 For any strongly-connected, legal and singularly Xr-attractable component

(X̂, α̂), there exists one D ∈ D(X̂, α̂) such that (X̂, α̂D) is legal, singularly Xr-attractable

and control-consistent.

The proof of Lemma 2 is similar to that of Lemma 1 and hence omitted for brevity. It

also requires partitioning the state space X̂ in a manner described in the proof of Lemma

1. The only difference is the definition of X0, which in the present case is defined as,

X0 := {x ∈ X̂ | α̂(x, Σ) ∩Xr 6= ∅}.

Theorem 1 There exists a nonblocking director for a plant G if and only if there exists

a maximally permissive nonblocking supervisor for G.

Proof : Suppose a maximally permissive nonblocking supervisor exists and is com-

puted by Algorithm 1. Then from Lemma 1, we can transform each component (X̂, α̂)

∈ SLIN (X, α) to a legal, invariant, nonblocking and control-consistent component

(LINC). Similarly from Lemma 2, we can transform each component (X̂, α̂) ∈ SLA
((X −Xk, α|X−Xk

), Xk) to a legal, LINC-attractable and control-consistent component

(LAC). Following such transformations, a graph such as in Figure 3.2(a) is converted
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to a graph such as in Figure 3.2(b), yielding a tree structure with leaf nodes consist-

ing of LINCs (which are partitionable into SLINCs and SLACs) and non-leaf nodes

consisting of LACs (which are partitionable into SLACs), thereby yielding a desired

nonblocking directed plant graph.

Conversely, if a nonblocking director exists, then since a director is also a supervisor,

a nonblocking supervisor exists. Finally since a nonblocking supervisor exists if and only

if the maximally permissive nonblocking supervisor exists (because controllability and

relative-closure are preserved under union), the assertion of the theorem follows.

Remark 2 The existence of a nonblocking director can be intuitively understood since a

nonblocking supervisor guarantees that there exists a path to the marked states, although

we do not know what the exact path is from any given state. The formal proof provided

above is rather intended for the synthesis solution discussed below since the proof is

given in a constructive way, which can be used to extract a director from a maximally

permissive supervisor.

3.4 Synthesis of nonblocking director

We use the ideas developed in the previous section to present a set of algorithms

for synthesizing a nonblocking director. The first algorithm transforms a SLIN to a

LINC; the second transforms a SLA to a LAC, and the final algorithm performs back-

ward search over the tree of SCCs in the graph of a maximally permissive nonblocking

supervised plant to find a desired director.

Algorithm 2 Given a strongly-connected, legal, invariant and nonblocking component

(X̂, α̂), the following steps compute a director D ∈ D(X̂, α̂) such that (X̂, α̂D) is legal,

invariant, nonblocking and control-consistent.

1. X̃ = X̂; X0 = ∅; X1 = X̂ ∩Xm; k = 1;
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2. For each x ∈ Xk, set the control action as

D(x) :=





{σ}, where σ ∈ Σc is any controllable

event s.t. α̂(x, σ) ∈ Xk−1

if α̂(x, Σc) ∩Xk−1 6= ∅

∅ if α̂(x, Σc) = ∅
{σ}, where σ ∈ Σc is any controllable

event s.t. α̂(x, σ) ∈ X̂

otherwise

3. X̃ = X̃ −Xk; If X̃ = ∅, then terminate the algorithm, else continue the following

steps;

4. Xk+1 = {x ∈ X̃ | α̂(x, Σ) ∩Xk 6= ∅}; k = k + 1

5. Go back to Step 2.

87 9

1110

(a) (b)

(c) (d)

87 9

1110

87 9

1110

87 9

1110

X3

X2

X1

Figure 3.3 Transformation from SLIN to LINC

We present an example to aid the understanding of Algorithm 2.
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Example 2 Consider a SLIN (X̂, α̂) shown in Figure 3.3(a). For simplicity of discus-

sion, we represent a component of interest by its state set. The associated state transition

function can be readily identified from the figures. The following steps show how one

director D ∈ D(X̂, α̂) is computed by Algorithm 2 such that (X̂, α̂D) is a LINC. Note

that a controllable event, if disabled by some underlying director, is omitted from the

corresponding figures.

1. X̃ = X̂ = {7, . . . , 11}; X0 = ∅; X1 = X̂ ∩ Xm = {11}, as circled in Figure 3.3(b);

k = 1;

2. We enable one controllable event for the state 11. Suppose we pick the one from the

state 11 to the state 10, as shown in Figure 3.3(b).

3. X̃ = X̃ −X1 = {7, . . . , 10} 6= ∅, so we continue the following steps.

4. X2 = {x ∈ X̃ | α̂(x, Σ) ∩X1 6= ∅} = {9, 10}, as circled in Figure 3.3(c); k = 2;

5. We return to Step 2.

2. We enable the controllable event from the state 9 to the state 8 and the one from the

state 10 to the state 11.

3. X̃ = X̃ −X2 = {7, 8} 6= ∅, so we continue the following steps.

4. X3 = {x ∈ X̃ | α̂(x, Σ) ∩X2 6= ∅} = {7, 8}, as circled in Figure 3.3(c); k = 3;

5. We return to Step 2.

2. We enable the controllable event from the state 7 to the state 10 and the one from

the state 8 to the state 7, as shown in Figure 3.3(c).

3. X̃ = X̃ −X3 = ∅, so we terminate the algorithm. The resulting (X̂, α̂D) is shown in

Figure 3.3(d).
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Next we prove the correctness of Algorithm 2.

Theorem 2 Consider the notation of Algorithm 2, then the algorithm terminates with

one director D ∈ D(X̂, α̂) such that (X̂, α̂D) is legal, invariant, nonblocking and control-

consistent.

Proof : Algorithm 2 computes the same chain of disjoint state sets as presented in the

proof of Lemma 1, and its correctness follows from that of Lemma 1.

Remark 3 Let |X̂| be the number of state in a SLIN . Due to determinism, there are

at most |X̂||Σ| transitions, then it can be verified that complexity of Algorithm 2 is of

order O(|X̂||Σ|).

Next we present an algorithm to transform a SLA to a LAC.

Algorithm 3 Given a reference set Xr ∈ X and a strongly-connected, legal, singularly

Xr-attractable component (X̂, α̂), the following steps compute a director D ∈ D(X̂, α̂)

such that (X̂, α̂D) is legal, singularly Xr-attractable and control-consistent.

1. X̃ = X̂; k = 0; X0 = Xr;

2. Xk+1 = {x ∈ X̃ | α̂(x, Σ) ∩Xk 6= ∅}; k = k + 1;

3. For each x ∈ Xk, set the control action as

D(x) :=





{σ}, where σ ∈ Σc is any controllable

event s.t. α̂(x, σ) ∈ Xk−1

if α̂(x, Σc) ∩Xk−1 6= ∅

∅ if α̂(x, Σc) = ∅
{σ}, where σ ∈ Σc is any controllable

event s.t. α̂(x, σ) ∈ X̂

otherwise

4. X̃ = X̃ −Xk; If X̃ = ∅, then terminate the algorithm, else go back to Step 2.
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Figure 3.4 Transformation from SLA to LAC

We present an example to aid the understanding of Algorithm 3.

Example 3 Consider a SLA (X̂, α̂) circled in Figure 3.4(a) and a reference state set

Xr. The following steps shows how one director D ∈ D(X̂, α̂) is computed by Algorithm

3 such that (X̂, α̂D) is a LAC.

1. X̃ = X̂ = {2, 4, 5}; k = 0; X0 = Xr.

2. Xk+1 = X1 = {x ∈ X̂ | α̂(x, Σ) ∩Xr 6= ∅} = {4}, as circled in Figure 3.4(b); k = 1;

3. We enable the controllable event from the state 4 to Xr, as shown in Figure 3.4(b).

4. X̃ = X̃ −X1 = {2, 5} 6= ∅, so we go back to Step 2.

2. X2 = {x ∈ X̃ | α̂(x, Σ) ∩X1 6= ∅} = {2, 5}, as circled in Figure 3.4(c); k = 2;

3. We enable the controllable event from the state 2 to the state 4 and the one from the

state 5 to the state 4, as shown in Figure 3.4(c).
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4. X̃ = X̃ −X2 = ∅, so we terminate the algorithm. The resulting (X̂, α̂D) is circled in

Figure 3.4(d).

The following theorem states the correctness of Algorithm 3, the proof of which is

similar to that of Algorithm 2 and hence omitted.

Theorem 3 Consider the notation of Algorithm 3, then the algorithm terminates with

one director D ∈ D(X̂, α̂) such that (X̂, α̂D) is legal, singularly Xr-attractable and

control-consistent.

Remark 4 Similar to the complexity of Algorithm 2, the complexity of Algorithm 3 is

also of order O(|X̂||Σ|), where |X̂| is the number of states in a SLA.

Now we are ready to present the final algorithm that performs backward search over

the tree of SCCs in the graph of a maximally permissive nonblocking supervised plant

to obtain a nonblocking director.

Algorithm 4 Given a plant G := (X, Σ, α, x0, Xm), the following steps compute a

nonblocking director.

(I) Initiation:

1. Compute SLIN (X, α). If SLIN (X,α) = ∅, then go to Step III.1; else do

the following.

2. Set k = 0 and let (Xk, αk) =
⋃

(X̂,α̂)∈SLIN (X,α)(X̂, α̂D), where D ∈ D(X̂, α̂) is

a director computed by Algorithm 2 for each (X̂, α̂) ∈ SLIN (X, α).

(II) Iteration:

1. If x0 ∈ Xk, then go to Step III.2; else do the following.
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2. Let X ′ = X −Xk; α′ = α|X′ . Compute SLA((X ′, α′), Xk). If SLA((X ′, α′),

Xk) = ∅, then go to Step III.1; else do the following.

3. (X̃, α̃) =
⋃

(X̂,α̂)∈SLA((X′,α′),Xk)(X̂, α̂D), where D ∈ D(X̂, α̂) is a director com-

puted by Algorithm 3 for each (X̂, α̂) ∈ SLA((X ′, α′), Xk);

4. (Xk+1, αk+1) = (Xk, αk) ∪ (X̃, α̃);

5. Go back to Step II.1 with k = k + 1.

(III) Termination:

1. Stop since no nonblocking director exists.

2. Stop since a nonblocking director is found.

We present an example to aid the understanding of Algorithm 4.

Example 4 Consider a plant G = (X, Σ, α, x0, Xm) shown in Figure 3.5(a). The fol-

lowing steps show how a nonblocking director is computed by Algorithm 4. Note that

this plant includes the components used in Example 2 and 3 (so some constructions per-

formed previously are reused to facilitate the computation). Note that the edges with

dashed line and double solid arrows represent the transitions on (uncontrollable) sensor

output while those with dashed line and double hollow arrows represent the transitions

on (uncontrollable) disturbance input. From the example, the transition from the state

6 to the state 5 is on (uncontrollable) sensor output.

Initiation:

1. According to the algorithm that computes SLIN (x, α) (see Algorithm 10 in the

Appendix), the state 3 and 12 are excluded from computation because they are

illegal states.

Then the state 13 becomes variant and therefore is excluded, too, as shown in

Figure 3.5(b). Note that the state 6 is not variant because 6 /∈ Xe.



www.manaraa.com

27

(a)

21

87 9

1110

13 14

54 6

3

12

(b) (c)

21

87 9

1110

13 14

54 6

3

12

(d)

21

87 9

1110

13 14

54 6

3

12

(e)

21

87 9

1110

13 14

54 6

3

12

(f)

21

87 9

1110

13 14

54 6

3

12

(g)

21

87 9

1110

13 14

54 6

3

12

21

87 9

1110

13 14

54 6

3

12

(h)

21

87 9

1110

13 14

54 6

3

12

Figure 3.5 Computing a nonblocking director
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Next the maximal SCCs of the remaining plant are identified and only {7, . . . , 11}
is invariant and nonblocking, as shown in Figure 3.5(c). So SLIN (x, α) = {{7, . . . ,
11}}.

The result in Example 2 is reused to obtain a LINC, {7, . . . , 11}, which is circled

and shaded in Figure 3.5(d).

2. (X0, α0) = {7, . . . , 11}.

Iteration 1: k = 0.

1. Since x0 = 1 /∈ X0, we continue the following steps.

2. X ′ = {1, . . . , 6, 12, 13, 14}. By the algorithm that computes SLA (see Algorithm

11 in the Appendix), we get SLA((X ′, α′), X0) = {{2, 4, 5}}, as circled in Figure

3.5(e). The result in the Example 3 is reused to obtain a LAC, {2, 4, 5}, circled

and shaded in Figure 3.5(f).

3. It follows that (X̃, α̃) = {2, 4, 5}; and

4. X1 = X0 ∪ {2, 4, 5} = {2, 4, 5, 7, . . . , 11}, as circled in Figure 3.5(g).

Iteration 2: k = 1.

1. Since x0 = 1 /∈ X1, we continue the following steps.

2. X ′ = {1, 3, 6, 12, 13, 14}. By the algorithm that computes SLA and Algorithm 3,

we get two LACs, {1} and {6}.

3. It follows that (X̃, α̃) = {1, 6}; and

4. X2 = X1 ∪ {1, 6} = {1, 2, 4, . . . , 11}, as circled in Figure 3.5(h).

Termination: Because x0 = 1 ∈ X3, the algorithm stops with a nonblocking director

having been found.
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The following theorem proves the correctness of Algorithm 4.

Theorem 4 Consider the notation of Algorithm 4, then Algorithm 4 terminates with

x0 ∈ Xk if and only if G|(Xk,αk) is a plant controlled by a nonblocking director.

Proof : It is easy to see Algorithm 4 implements the computation discussed in the proof

of Theorem 1 and hence is correct.

Remark 5 From [17], we know the overall complexity of computing a maximally per-

missive nonblocking supervisor is quadratic, namely, of order O(|X̂|2|Σ|2). In addition,

we also show in the Remark 3 and 4 that the complexity of additional steps to trans-

form SLIN/SLA to LINC/LAC is linear. Thus the complexity of the above set of

algorithms that computes a nonblocking director is also of order O(|X̂|2|Σ|2).

Remark 6 The nonblocking director we synthesize is deterministic in the sense that

it computes for each state a fixed control action to perform. It is also possible to

consider a director that uses randomization for selecting control actions. Such a director

may perform different control selections on different visits of the same state. By the

rules of probability, the system would eventually reach a marked state, if a nonblocking

director exists. Since we don’t define any performance index for logic correctness, this

randomization approach also works. However, such an approach makes the system

evolution path unpredictable and aimless, which is often undesired. Instead, we take

the “deterministic” approach and the notion of attraction, which brings the system one

step closer to the desired final states with each execution of the selected control action.

Remark 7 Depending on the application, the optimality of the director synthesized

can also be of interest, though not always necessary. For example, in real-time systems

where tasks are scheduled to meet deadlines, a popular scheduling scheme is the static

priority based scheduling, where the priority of each task is fixed relative to other tasks.
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By no means this is optimal in terms of processor utilization, but nonetheless widely

practiced. Such a scheme is guaranteed to be logically correct, i.e., meet deadlines, if

and only if a deadline meeting scheme exists.

3.5 Application example

We provide an application example to demonstrate our result. The application is of

controlling train traffic over a set of track sections.

As shown in Figure 3.6(a), six sections of tracks labeled from 1 to 6 are separated by

some traffic lights and a switch. The traffic lights can be used to stop the traffic in the

directions as indicated by the arrows above the lights, but have no effect for the traffic

in the opposite directions. A switch connects the section 2, 3 and 4. A train coming

from the section 2 can go to the section 3 or 4 while a train coming from the section 3

or the section 4 can go to the section 2 via the switch.

Suppose initially two trains T1 and T2 are in the section 1 and 2, respectively. We are

required to synthesize a nonblocking director to control the traffic lights and the switch

to ensure T1 and T2 eventually swap their positions without running into each other.

We model the movement of T1 and T2 by two automata G1 and G2, respectively,

shown in the Figure 3.6(b). The combined movement of two trains is given by G1||G2.

The corresponding graph is denoted as (X, α), shown in Figure 3.6(c), where the sce-

narios that two trains are in the same section are represented by illegal states.

Applying Algorithm 4, we first compute SLIN (X,α), which yields only one SLIN

in this example. Since this SLIN includes the initial state x0, it turns out to be the

maximally permissive nonblocking supervisor for the plant (X, α), as shown in Figure

3.6(d).

Next Algorithm 2 is applied to transform this SLIN into a LINC. The correspond-

ing chain of disjoint state sets have been identified and the control actions for each state
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Figure 3.6 Synthesis of a nonblocking director for the application example
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are obtained. In our example, the chain contains 11 disjoint state sets, as shown in Fig-

ure 3.6(e). Note that the disabled events are removed from the figure. After trimming,

the resulting nonblocking director is shown in Figure 3.6(f).

The control strategy with this nonblocking director is summarized as follows. We

first guide T2 from the section 2 to the section 5 via the section 4. Then we guide T1

from the section 1 to the section 6 via the section 2 and 3. Next we release T2 from the

section 5 and move it to its destination, the section 1, via the section 4 and 2. In the

end we move T1 back from the section 6 to its destination, the section 2, via the section

3.
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CHAPTER 4. OPTIMIZATION BASED FRAMEWORK

4.1 Introduction

In the previous chapter, we have addressed the control existence and synthesis prob-

lems for the logically correct behavior of the systems under directed control. Starting

from this chapter, we will address the best performance, or optimality issue of directed

control. We begin with an optimization based framework.

This framework differs from the prior work on optimal supervisory control, where

optimization is with respect to the set of supervisors in contrast to the set of directors.

Also, the optimization criterion we consider is different from those considered in prior

works. In [20], a cost function is defined on the set of transitions, and the control

objective is to restrict the plant behavior in such a way that after starting from a given

initial state, the plant reaches one of the marked states along a trajectory of optimal

cost. In [7], a cost function is defined on the set of transitions and the control objective

is to restrict the plant behavior so that after starting from any state the plant reaches

one of the marked states along a trajectory of optimal cost. In contrast to the distance

function of [7] which computes the worst-case cost to a fixed set of states, we consider

distance function to be the worst-case cost to the set of nearest reachable marked states.

In [23], two types of cost are defined: a path cost and a control cost on the graph

representing a plant. The control objective is to determine a subgraph of the graph in

which the worst case path (in terms of cost) among all possible paths in that subgraph,

is still the best compared to worst case paths of other subgraphs. While such a problem
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admits many solutions, the authors study maximal DP-optimal (dynamic-programming

optimal) solutions. A DP-optimal solution has the property that its admissible sub-

graphs are also optimal in their corresponding subproblems. This formulation was later

generalized to the setting of languages (rather than graphs) in [24] and to the case of

partial observation in [19]. In [16], control costs are associated with transitions (these

are the costs incurred in disabling the transitions). Moreover, the states are classified

into desirable and undesirable states, and a certain cost is incurred if an undesirable

state is reached or if a desirable state is not reached in the supervised plant. The ob-

jective in that work is to find a supervisor for which the net cost incurred in disabling

events, reaching undesirable states, and missing desirable states, is minimized. The au-

thors use network flow methods, namely the max-flow min-cut theorem, to synthesize

such a supervisor. Further by selecting appropriate cost functions, the authors are able

to compute a variety of languages that are of interest in the control of discrete event

systems by reducing the corresponding supervisory control problems to an instance of

an optimal control problem of their setting.

In the subsequent sections, we will formulate our optimization based framework,

introduce the notion of dynamic-programming optimality, and address the existence

problem of optimal director. Some examples will be provided to aid the understanding

of the notions and an algorithm to compute director cost.

4.2 Optimal directed control problem

Let c : Σ∗ ×Σ →R+ denote a cost function of control, where R+ denotes the set of

positive reals, including infinity. For each s ∈ Σ∗ and σ ∈ Σ, the cost c(s, σ) represents

the cost of “selecting” the event σ ∈ Σ following the execution of trace s.

Remark 8 For a trace s ∈ Σ∗ and an uncontrollable event σ ∈ Σu, c(s, σ) represents the

execution cost of σ following the execution of s and the payoff of reaching the resulting



www.manaraa.com

35

state α(x0, sσ), whereas for a controllable event σ ∈ Σc, c(s, σ) represents the execution

cost of σ following the execution of s and the payoff of reaching the resulting state

α(x0, sσ), together with the disablement cost of all other controllable events feasible at

trace s. Thus a single cost function suffices to capture both the “control cost” and “path

cost” introduced in [24]. Also, the cost c(s, σ) can include the cost of reaching the plant

state α(x0, sσ). For example, if the state α(x0, sσ) is an illegal state (or equivalently,

the trace sσ does not belong to the specification language), then we can set c(s, σ) = ∞.

By induction, the cost function can be extended to a mapping c : Σ∗ × Σ∗ → R+ as

follows:

∀s, t ∈ Σ∗, σ ∈ Σ :





c(s, ε) := 0 and

c(s, tσ) := c(s, t) + c(st, σ)

We next introduce the notion of frontier traces needed for defining the cost of a

director.

Definition 6 Given a trace s ∈ Σ∗, its set of frontier traces in a language K, denoted

as (K\s)f , is given by:

∀s ∈ Σ∗: (K\s)f := {t 6= ε | st ∈ K and ∀u < t : su 6∈ K}

The frontier traces of s are the minimal extensions of s with non-zero length such

that the extensions belong to K. If K is the set of marked traces, then execution of any

such extension implies accomplishing a task that is pending to be completed.

Definition 7 Given a plant G, a director D : L(G) → 2Σc , a trace s ∈ L(GD) and

a marked frontier (trace) extension t ∈ (Lm(GD)\s)f , c(s, t) denotes the cost of “com-

pleting the task” along the trace t following the trace s. We consider the costs of all

such marked frontier extensions t of s in L(GD), and determine the worst possible cost

maxt∈(Lm(GD)\s)f
c(s, t). We do this for all traces s of L(GD), and use the largest worst
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case cost among all traces s as the cost P (D) of the director D, i.e.,

P (D) :=





maxs∈L(GD)[maxt∈(Lm(GD)\s)f
c(s, t)] if ∀s ∈ L(GD) : |(Lm(GD)\s)f | < ∞

∞ otherwise

where for any s ∈ L(GD) such that (Lm(GD)\s)f = ∅, we define

max
t∈(Lm(GD)\s)f

c(s, t) :=





0 if s ∈ Lt(G) ∩ Lm(GD)

∞ otherwise

Since executing a marked trace amounts to finishing a pending task, P (D) thus

represents the worst case cost of finishing a pending task under the control of D. It

follows from the definition that if D is blocking, i.e., if there exists s ∈ L(GD)−Lm(GD)

such that (Lm(GD)\s)f = ∅, then P (D) = ∞. Thus any director with finite cost must

be nonblocking.

The objective of the optimal control is to find a director with the least cost.

Optimal directed control problem: Determine whether there exists

D∗ ∈ arg
{

min
D

P (D)
}

with P (D∗) < ∞

and if yes, then find one such D∗.

The motivation behind the above optimal control problem is that under the control

of an optimal director, the system should accomplish a pending task (by executing a

marked frontier extension) in a minimal possible cost for all possible histories of its

evolution. Since the cost of a blocking director is infinity by definition, an optimal

director, when it exists, is nonblocking. It may be noted that the optimal solution need

not be unique.

In our framework, once a non-terminating marked state is reached, the system gets

“re-initialized” with the marked state just reached acting as a new initial state and the

existing marked states continuing to act as the final states.
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This enriched view of non-terminating marked states is formulated in the following

definition:

Definition 8 Given a plant G := (X, Σ, α, x0, Xm), I(G) denotes the set of all possible

states from which the plant can “initialize” or “re-initialize”, i.e.,

I(G) := {x0} ∪ (Xm −Xt)

It is possible that a re-initialization results in a completely new set of marked states.

Our framework can easily accommodate this case by defining an extended model as the

concatenation of a suitable number of appropriately initialized plant models.

Remark 9 In general, we treat all marked states “equally”, i.e., we don’t favor some

marked states over the others in terms of completing a task. But sometimes differ-

entiating marked states is useful and desired, e.g., some marked states may be more

important or preferred. We can incorporate this preference in our framework by the

following additional modeling steps:

1. Create a dummy state for each “less favorable” marked state;

2. Redirect all the incoming transitions to a less favorable marked state to its corre-

sponding dummy state;

3. Move all the outgoing transitions from a less favorable marked state to start from

its corresponding dummy state instead;

4. Create a new transition from each dummy state to its corresponding marked state,

and assign an appropriate “penalty” cost for the transition.

With the above steps, the cost to reach a less favorable marked state has been

increased, thus the solution to the optimal control problem would “favor” those preferred

marked states.
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In the above optimal directed control problem, the cost function is “trace-based” for

the sake of generality. In a practical setting one would typically start with a “state-

based” representation of the cost function. Also, it is possible to suitably refine the

plant model so that the cost function can be viewed as “state-based” (with respect to

the states of the refined plant) by defining a certain equivalence relation over the set of

traces. While in general such a refinement may not preserve the finiteness of the state

space, it will do so in any practical setting where typically the given trace-based cost

function will depend only on a bounded history of the system evolution.

With this understanding, we formulate and study the optimal director problem in a

state-based setting. A cost function is state-based if for all s, t ∈ Σ∗ such that α(x0, s) =

α(x0, t) := x, it holds that for all u ∈ Σ∗ such that α(x, u) is defined, c(s, u) = c(t, u).

In such a case, the cost function can be specified as a map, c : X ×Σ →R+ so that for

x ∈ X and σ ∈ Σ, c(x, σ) is the cost of executing σ at state x.

A plant G := (X, Σ, α, x0, Xm) can also be viewed as a weighted directed-graph

G := (X,E, Xm), where E ⊆ X×Σ×X is the set of transitions, called the set of edges.

An edge of G is an ordered triple e = (x1, σ, x2) ∈ E with α(x1, σ) = x2, and is said to

be labeled by event σ, and directed from state x1 to state x2. The edge e is assigned a

control cost, denoted c(e), with value c(e) = c(x1, σ).

We use E(x) to denote the set of edges defined at x, and Ec(x) (resp. Eu(x)) to denote

the set of edges labeled with controllable (resp. uncontrollable) events at x. The trim

directed plant under a state-based director D is given by GD = (XD, ED, XD
m), where

ED ⊆ E represents the set of transitions enabled by the director D, and XD (resp.

XD
m) represents the set of states (resp. the set of marked states) in the trim directed

plant. Thus the set of all possible initialization states of GD is given by I(GD) :=

{x0} ∪ (XD
m −Xt). For x ∈ X, D\x is used to denote the director D with x treated as

the initial state, and we call it a director rooted at x. Note that D\x0 = D.
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A path p is a finite sequence of edges p = (x1, σ1, x2)(x2, σ2, x3) · · · (xn−1, σn−1, xn),

in which p is said to start from x1 and end at xn. The cost of path p is the sum of

the costs of its edges, and is denoted by c(p). For each x ∈ X, let Πf
G(x), called the

set of marked frontier paths from x in G, denote the set of all paths of G of the form

p = (x1, σ1, x2)(x2, σ2, x3) · · · (xn−1, σn−1, xn) such that x1 = x, xn ∈ Xm, and for all

i = 2, · · · , n − 1, xi /∈ Xm. The states reached from x via the marked frontier paths of

Πf
G(x) are called x’s marked frontier states.

Definition 9 The distance of x (to its marked frontier states in G), denoted dG(x), is

defined as the worst cost of all paths in Πf
G(x), i.e.,

dG(x) :=





max{c(p) | p ∈ Πf
G(x)} if 0 < |Πf

G(x)| < ∞

0 if Πf
G(x) = ∅ and x ∈ Xtm

∞ otherwise

It is clear that only terminating marked states have the distance of 0. Also note that

when Πf
G(x) 6= ∅,

dG(x) = max{dG(x′) + c(e) | e = (x, σ, x′) ∈ E}

= max{d1, d2} (4.1)

where

d1 := max{dG(x′) + c(e) | e = (x, σ, x′) ∈ E, x′ 6∈ Xm}

d2 := max{0 + c(e) | e = (x, σ, x′) ∈ E, x′ ∈ Xm}

From Definition 7 and 9, it follows that the cost of a director D is given by,

P (D) = max
x∈XD

dGD(x) (4.2)

Note that if two states x1 and x2 are such that every path in Πf
G(x1) is a suffix

of some path in Πf
G(x2), then dG(x1) ≤ dG(x2). So Equation 4.2 is equivalent to the
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following:

P (D) = max
x∈I(GD)

dGD(x) (4.3)

It follows that the optimal control problem is to find

D∗ ∈ arg
{

min
D

P (D)
}

= arg

{
min

D
max

x∈I(GD)
dGD(x)

}

Remark 10 Note that the definition of distance function dG(·) given above computes

the worst case distance from a state to it’s set of marked frontier states. This is different

from the distance function consider in [7], which computes the worst case distance of a

state to a fixed set of marked states. Another difference between our work and the work

in [7] is that we optimize over the set of directors, whereas the optimization in [7] is

performed over the set of all “stabilizing” supervisors.

Remark 11 In our setting, we do not explicitly define “illegal” states, but they can be

identified by suitably defining the cost function. Any state that is deemed illegal should

have an infinite cost for all incoming edges to the state. As a result, none of such edges

should be present in a trim optimally directed plant, ensuring the unreachability of that

state.

If a plant G is not trim or contains edges with infinite cost, then such a plant can be

reduced to a trim one having no edges with infinite cost while preserving the solution to

the optimal director problem. We provide an algorithm below for such a reduction.

Algorithm 5 Input a plant G, the following steps generate a reduced trim plant G′

such that an optimal director for G′ exists if and only if an optimal director for G exists.

1. For each x ∈ X, remove the transitions on σ ∈ Σc(x) if c(x, σ) = ∞ and x ∈ Xe ⇒
∃σ′ ∈ Σc(x) : c(x, σ′) 6= ∞. (Note that this step may result in new terminating

states.)
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2. k = 0; Xk := {x ∈ X | ∃σ ∈ Σu(x) s.t. c(x, σ) = ∞} ∪ {x ∈ Xe | ∀σ ∈ Σc(x) :

c(x, σ) = ∞} ∪ {x ∈ X | ∀s ∈ Σ∗ : α(x, s) /∈ Xm}.

3. Xk+1 := Xk ∪ {x ∈ X −Xk | ∃σ ∈ Σu(x) : α(x, σ) ∈ Xk} ∪ {x ∈ (X −Xk) ∩Xe |
∀σ ∈ Σc(x) : α(x, σ) ∈ Xk} ∪ {x ∈ X −Xk | ∀σ ∈ Σ(x) : α(x, σ) ∈ Xk}.

4. Repeat Step 3 with k = k + 1 until Xk+1 = Xk.

5. Remove all the incoming transitions to the states of Xk.

6. Trim the plant and the resulting plant is G′.

The following theorem establishes the correctness of Algorithm 5.

Theorem 5 Given a plant G, consider the reduced plant G′ computed by Algorithm 5.

An optimal director for G′ exists if and only if an optimal director for G exists.

Proof : First note that the set of directors of G can be divided into two classes, one

that restricts G to a subgraph of G′ and another that doesn’t. It suffices to show that

the second class of directors cannot be optimal. Next note that state set of G′ is either

a strict subset of that of G, or it equals the state set of G. First consider the latter, i.e.,

X0 = ∅. Then there are two cases: either edge set of G is a strict subset of that of G′,

or the two edge sets are the same. If it is the case of the latter, then there is nothing

to prove since G = G′. On the other hand, if it is the case of the former, then some

edges are removed in Step 1 of the algorithm. Since these edges are of infinite cost, they

must not belong to any optimally directed G. This proves that in case X0 = ∅, the class

of directors that do not restrict G to a subgraph of G′ are not optimal. Next consider

the case when X0 6= ∅. Then any state in X0 must not be reached in any optimally

directed G, since otherwise the cost of the corresponding director will be infinity. (This

is because every state in X0 has an uncontrollable transition of infinite cost, or is an

element of Xe where all controllable transitions are of infinite cost, or is not coaccessible.
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Recall that (i) uncontrollable transitions cannot be disabled; (ii) at a state of Xe, at least

one controllable transition must be enabled; (iii) all optimal directors are nonblocking.)

Finally we claim that when X0 6= ∅, any state in Xk(≥1) must not be reached in an

optimally directed G. This is because if a state is reached in Xk(≥1), then there exists no

director that can prevent G from reaching a state in X0. (This is because each state in Xk

has an uncontrollable transition to Xk−1, or is an element of Xe and all its controllable

transitions lead to Xk−1, or simply has all its transitions leading to Xk−1.) It should

also be clear that the states being trimmed out are inaccessible under the control of any

optimal director of G. This completes the proof.

Remark 12 With the above reduction result of Algorithm 5 in place, it follows that

there is no loss in generality to consider only the plants that are trim and all edges are

of finite cost.

Central to our director existence and synthesis is the notion of attraction introduced

in [6], which is presented below.

Definition 10 Given a plant G, consider a state set X̂ ⊆ X. A state x ∈ X is said

to be 1-step X̂-attractable in G if α(x, Σ) ∩ X̂ 6= ∅ and α(x, Σ) ⊆ X̂. x ∈ X is said to

be 1-step directively X̂-attractable in G if there exists a director D such that x is 1-step

X̂-attractable in GD. In other words, x ∈ X is 1-step directively X̂-attractable in G if

α(x, Σ) ∩ X̂ 6= ∅, α(x, Σu) ⊆ X̂ and x ∈ Xe ⇒ α(x, Σc) ∩ X̂ 6= ∅.

Note that if x ∈ X is 1-step attractable to X̂ ⊆ X, then x is also 1-step directively

attractable to X̂, i.e., the notion of 1-step attractability is stronger than the notion

of 1-step directive attractability. In the following definition, the notion of single-step

attractability is generalized to multi-step attractability.

Definition 11 Given a reference state set X̂ ⊆ X, x ∈ X is X̂-attractable in G if there

exists a non-negative integer N such that for all paths p from x of length greater than or
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equal to N , p visits X̂. x ∈ X is directively X̂-attractable in G if there exists a director

D such that x is X̂-attractable in GD. We use Ω(X̂), called the region of attraction of X̂,

to denote the set of all X̂-attractable states, and Ωd(X̂), called the region of directive

attraction of X̂, to denote the set of all directively X̂-attractable states. A state set

X̃ ⊆ X is said to be attractable to X̂ if X̃ ⊆ Ω(X̂), and directively attractable to X̂ if

X̃ ⊆ Ωd(X̂).

Note that from the definition of multi-step attractability and the fact that the ap-

plication of control decreases the number of enabled outgoing transitions for states, it

follows that X̂ ⊆ Ω(X̂) ⊆ Ωd(X̂) for any X̂ ⊆ X.

Remark 13 The notion of attractability given in Definition 11 is identical to that of

strong attractability first introduced in [6]. On the other hand, the notion of directive

attractability given in Definition 11 is stronger than the notion of weak attractability

introduced in [6]. Directive attractability is relevant in our context (and not weak

attractability) since we are considering directors and not supervisors.

4.3 Dynamic-programming optimality

Among the optimal directors, of special interest are those that are dynamic-program-

ming optimal, which we define next:

Definition 12 Given a plant G, and cost of the control function c : Σ∗ × Σ → R+, an

optimal director D is said to be dynamic-programming optimal (DP-optimal) if for all

s ∈ L(GD), D\s is also optimal for G\s with respect to the cost function c\s, where for

t ∈ Σ∗, σ ∈ Σ,

D\s(t) := D(st); c\s(t, σ) := c(st, σ)

and G\s denotes the plant G with a new initial state given by α(x0, s).
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The DP-optimality property is not possessed by all optimal directors, i.e., there

exist optimal directors but their “sub-directors” are not optimal for the “sub-problems”.

However, by replacing such sub-directors with optimal ones, one can always obtain a

DP-optimal director.

The following example compares the notions of optimal and DP-optimal directors.

c,1 a,6d,2 b,5
j,9f,2 g,3 h,3

Figure 4.1 The plant of Example 5

Example 5 Consider a plant G with languages Lm(G) = {acf + acg + adh + bj} and

L(G) = pr(Lm(G)). The plant is shown in Figure 4.1, where an edge with dashed line

and double arrows represents a transition on an uncontrollable event while an edge with

solid line and single arrow represents a transitions on a controllable event. The edges

are labeled with events as well as costs.

For illustration, we consider three possible directors D1, D2 and D3: D1 and D2

select “a” in the initial state, whereas D3 selects “b” in the initial state. In the state

reached following the execution “ac”, D1 selects “f”, whereas D2 selects “g”. Note

that the uncontrollable event “d” remains enabled following “a” under both D1 and D2.
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GD2GD1 GD3
c,1 a,6d,2f,2 h,3 c,1 a,6d,2g,3 h,3

b,5j,9
Figure 4.2 Directed plants GD1 , GD2 and GD3 of Example 5

Then Lm(GD1) = {acf + adh} and L(GD1) = pr(Lm(G/D1)). Similarly, Lm(GD2) =

{acg + adh} and L(GD2) = pr(Lm(GD2)). Finally, Lm(GD3) = {bj} and L(GD3) =

pr(Lm(GD3)). All directed plants are shown in Figure 4.2. Note that none of the three

directed behaviors is the same to each other.

As we can see, the cost associated with D1 and D2 is dominated by the cost incurred

following the trace “adh”, which is 11. The cost of D3 can be seen to be 5 + 9 = 14.

Thus, out of the three possible directors D1, D2 and D3, two are optimal, namely, D1

and D2. Clearly both D1 and D2 are solutions to the optimal control problem, but D2

is not DP-optimal. After the system has executed the trace “ac”, the worst case cost

beyond “ac” is 3 under D2, whereas it is 2 under D1. So although both D1 and D2

have same overall cost of 11, the “sub-director” D1\ac is optimal for G\ac, whereas

D2\ac does not have this property. In other words, D1 is DP-optimal, whereas D2 is

not DP-optimal.
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4.4 Existence of optimal director

The number of directors is an exponential function of the number of plant states.

This is because at each state there are at most |Σc|+1 choices for a director action, and

so there are at most (|Σc| + 1)|X| directors. When |X| is finite, it is possible to search

exhaustively over the set of finitely many directors for an optimal director, provided we

know how to compute the cost of a state-based director. Thus, having an algorithm

to compute the cost of a given state-based director will establish the solvability of the

optimal control problem. In this section we give an algorithm of polynomial complexity

to compute the cost of a given state-based director.

Given a state-based director D (or equivalently, the directed plant GD), the following

algorithm computes its cost, P (D).

Algorithm 6 Input GD

Initiation:

Set k = 0, Ωk = XD
tm, ∀v ∈ Ωk : ρ(v) = 0, and ∀v ∈ XD

m : λ(v) = 0.

Iteration:

1. Let V be the set of all 1-step (Ωk ∪ XD
m)-attractable states, and for all v ∈ V

compute, ρ(v) = max{λ(v′) + c(e) | e = (v, σ, v′) ∈ ED}

2. Let Ωk+1 = Ωk ∪ V , and for each v ∈ V −XD
m , let λ(v) = ρ(v).

Termination:

• If Ωk+1 = XD, then set Π(D) = maxv∈XDρ(v), and stop;

• If Ωk+1 6= XD and V = ∅, then set k = k + 1, Ωk+1 = Ωk ∪XD
m , Π(D) = ∞, and

stop;

• If Ωk+1 6= XD and V 6= ∅, then set k = k + 1, and go to iteration step.
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Remark 14 Note that Algorithm 6 computes the region of attraction of XD
m in Ωk+1,

i.e., upon its termination, we have Ωk+1 = Ω(XD
m) (following from the algorithm for

computation of region of attraction and its proof given in [6]). Also note that when

Algorithm 6 terminates with Π(D) = ∞, we have Ωk+1 = Ω(XD
m) 6= XD.

Before we prove the correctness of Algorithm 6, we present an example to aid the

understanding of the algorithm.

Example 6 Consider a directed plant GD represented by the weighted digraph of Fig-

ure 4.3. As Algorithm 6 proceeds, it iteratively computes the values of Ωk, which is

shown in Figure 4.3 as the set of states encircled. For each state x in the plant, the

value of ρ(x) is also shown beside x in parentheses.

Initiation:

Since XD
tm = ∅ and XD

m = {x2}, Ω0 = ∅, and λ(x2) = 0.

Iteration 1:

x1 is the only 1-step (Ω0 ∪XD
m)-attractable state, and so V = {x1}. We also obtain

ρ(x1) = 2. Therefore, Ω1 = Ω0 ∪ V = {x1} and λ(x1) = 2.

Iteration 2:

x0 and x3 both are 1-step (Ω1 ∪ XD
m)-attractable. From the iteration step 1, V =

{x0, x3}, ρ(x0) = 5 and ρ(x3) = 6. From the iteration step 2, Ω2 = Ω1∪V = {x0, x1, x3},
and λ(x0) = 5, λ(x3) = 6.

Iteration 3:

x2 is 1-step (Ω2 ∪ XD
m)-attractable, and V = {x2}, ρ(x2) = 9. Therefore, Ω3 =

Ω2 ∪ V = XD.

Termination:

Since Ω3 = XD, the algorithm terminations, giving Π(D) = maxv∈XD ρ(v) = ρ(x2) =

9, i.e., the cost of this director is 9.



www.manaraa.com

48

G Iteration 1

X0
43

X1X3 2

3

2

Iteration 2

X0
4 3

X1X3 2

3

2
(2)

(6)

(5)

Iteration 3

X0
4 3

X1X3 2

3

2
(2)

(6)

(5)

(9)

Ω1

Ω3Ω2

X0
4

X1X3 2

3

2
3

X2 X2

X2X2

(2)

Figure 4.3 Computing the cost of a given director

We next prove the correctness of Algorithm 6. We need the following lemma which

states that ρ(v) computes the distance from v to the marked frontier states in GD.

Lemma 3 For any iteration step k of Algorithm 6, it holds that ∀v ∈ Ωk : ρ(v) =

dGD(v).

Proof : We prove the lemma by induction on iteration steps of Algorithm 6. Since

Ω0 = XD
tm, and ρ(v) = 0 for all v ∈ XD

tm, the base step trivially holds. Assume for

induction that the lemma holds for the jth step, and consider a state v ∈ Ωj+1. Then

from the definition of 1-step attractability, for every edge e = (v, σ, v′) ∈ ED, we have

v′ ∈ Ωj ∪XD
m . From the induction hypothesis, we have

ρ(v′) = dGD(v′) (4.4)

if v′ ∈ Ωj. Further, if v′ ∈ Ωj − XD
m , then from the construction of the algorithm,

λ(v′) = ρ(v′), and so from Equation (4.4), λ(v′) = dGD(v′) for each v′ ∈ Ωj −XD
m . On

the other hand, if v′ ∈ XD
m , then λ(v′) = 0. Using these values of λ(v′), and applying
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definition of ρ(v) in iteration step 1, we obtain:

ρ(v) = max{λ(v′) + c(e) | e = (v, σ, v′) ∈ ED}

= max{d1, d2},

where

d1 := max{dGD(v′) + c(e) | e = (v, σ, v′) ∈ ED, v′ 6∈ XD
m}

d2 := max{0 + c(e) | e = (v, σ, v′) ∈ ED, v′ ∈ XD
m}.

Then the result follows from Equation (4.1).

The following theorem establishes the correctness of Algorithm 6.

Theorem 6 It holds that, Π(D) = P (D).

Proof : Consider first when Algorithm 6 terminates with Ωk+1 = XD. Then from

Lemma 3, for each v ∈ XD, ρ(v) = dGD(v). So,

Π(D) = max
v∈XD

ρ(v) = max
v∈XD

dGD(v) = P (D),

where the last equality follows from Equation (4.2).

On the other hand, if Algorithm 6 does not terminate with Ωk+1 = XD, (so that

Π(D) = ∞), then there exists a state v ∈ XD that is not attractable to XD
m . So, either

there exists a cycle of states in XD − Ω(XD
m) containing v, or there is no path from

v to any states in XD
m . In the first case, given any finite number, there exists a path

starting from v, such that the cost of the path becomes infinite; in the second case, D

is a blocking director. Hence, P (D) = ∞ = Π(D) for either of the cases.

Remark 15 At each iteration, at least one state is included in Ωk and so there is

a maximum of |XD| iterations. In addition, for every iteration, we perform certain

computations for all those states that are 1-step (Ωk ∪XD
m)-attractable. The complexity

of this step is linear in the number of such states and the number of their edges. So, the

overall complexity of Algorithm 6 is O(|XD| × |Σ|).
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The following theorem shows that a director has a finite cost if and only if the region

of attraction of marked states in GD is the entire state space XD. So, if a director is

such that XD 6⊆ Ω(XD
m), then it can not be an optimal one.

Theorem 7 Given a directed plant GD, P (D) is finite if and only if XD ⊆ Ω(XD
m).

Proof : For sufficiency, note that upon the termination of Algorithm 6, we have Ωk+1 =

Ω(XD
m). So, if XD ⊆ Ω(XD

m), then Algorithm 6 terminates with Ωk+1 = XD, and at

that step P (D) = Π(D) is finite.

For necessity, if P (D) = Π(D) is finite, then Algorithm 6 terminates with Ωk+1 =

XD. Since Ωk+1 consists of all the attractable states of XD
m in GD, we conclude that

XD ⊆ Ω(XD
m), as desired.

The following theorem follows from Theorem 7 and provides a test for the existence

of an optimal director (of finite cost). We need to introduce the notion of invariance

first.

Definition 13 Given X̂ ⊆ X, X̂ is called invariant if α(X̂, Σu) ⊆ X̂ and ∀x ∈ X̂ ∩Xe :

α(x, Σc) ∩ X̂ 6= ∅.

Note that X̂ ⊆ X is invariant if and only if there exists a director D such that under

the control of D, all the state transitions of X̂ are confined within X̂.

Theorem 8 Given a plant G, there exists an optimal director (with finite cost) if and

only if there exists X̂m ⊆ Xm s.t. x0 ∈ Ωd(X̂m) and Ωd(X̂m) is invariant.

Proof : For sufficiency, suppose x0 ∈ Ωd(X̂m) and Ωd(X̂m) is invariant, we can define a

director D such that XD = Ωd(X̂m). Under the control of D, we have XD = Ω(XD
m),

where XD
m ⊇ X̂m. Then it follows from Theorem 7 that P (D) is finite. Hence, an

optimal director with finite cost also exists.
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For necessity, suppose an optimal director exists, and let it be D. Then P (D) is

finite, and so it follows from Theorem 7 that XD ⊆ Ω(XD
m). Since Ω(XD

m) ⊆ Ωd(X
D
m),

we get XD ⊆ Ωd(X
D
m), which implies that x0 ∈ Ωd(X

D
m) and Ωd(X

D
m) is invariant. So

the result follows by letting X̂m = XD
m .

Remark 16 Theorem 8 requires the computation of region of directive attraction. By

replacing the phrase “1-step (Ωk ∪XD
m)-attractable states” with the phrase “1-step di-

rectively (Ωk ∪ X̂m)-attractable states” in Algorithm 6, we can compute the region of

directive attraction in linear complexity. However, the number of subsets X̂m of Xm is

exponential in the number of states of Xm. So the complexity of checking the existence

of an optimal director by this approach is O(|X| × |Σ| × 2|Xm|), which is linear in the

number of states and events of G but exponential in the number of marked states of G.

Thus for a plant with a smaller number of marked states, this approach will be more

manageable.
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CHAPTER 5. OPTIMAL DIRECTOR FOR ACYCLIC

PLANT

5.1 Synthesis of optimal director: Acyclic case

Since at any state x ∈ X, a director can enable one of the feasible controllable events

in Σc(x) or none of such events, there are |Σc(x)| + 1 ≤ |Σc| + 1 choices for control per

state. It is clear that the total number of state-based directors is upper bounded by

(|Σc| + 1)|X|, whereas the complexity of computing the cost of any given director D is

known to be O(|XD|×|Σ|), as shown in Chapter 4. So if an optimal director is identified

by way of enumerating all directors and comparing their costs, the complexity of such an

exhaustive search will be exponential in number of plant states. We show in this section

that for acyclic plants, it is possible to compute an optimal director with complexity

that is polynomial in the number of plant states.

We first show that an optimal director for a trim acyclic G always exists. We need

the following lemma which states that the region of attraction of the terminating marked

states in G is the entire state space X.

Lemma 4 For a trim acyclic G, it holds that X ⊆ Ω(Xtm).

Proof : Since G is acyclic and has a finite state space, it suffices to show that for any

state v in G, all paths from v can be extended to end in Xtm. Since, G is trim, Xt ⊆ Xm,

and so Xtm = Xt. Pick a state v in G and a path p starting from v. If p ends in Xtm,

then we are done, otherwise, suppose p ends in state v1 6∈ Xtm. Then since Xtm = Xt,
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v1 is not a terminating state, and further from acyclicity of G, v1 6= v. Since v1 is

not terminating, there exists an edge e = (v1, σ, v2) ∈ E such that either v2 ∈ Xtm, or

v2 is not a terminating state and v2 6= v1. From acyclicity of G, it also follows that

v2 6= v1 6= v. Continuing this line of reasoning, and invoking the finiteness of |X|, we

can extend p such that it ends in Xtm.

The following corollary follows from Lemma 4 and establishes the existence of an

optimal director.

Corollary 1 If G is trim, acyclic, and has finite states, then an optimal director for G

exists.

Proof : From Lemma 4, X ⊆ Ω(Xtm). Since Ω(Xtm) ⊆ Ωd(Xtm), we get X ⊆ Ω(Xtm) ⊆
Ωd(Xtm). This implies x0 ∈ Ωd(Xtm), and further since Ωd(Xtm) ⊇ X, Ωd(Xtm) is

invariant. So, from Theorem 8 it follows that an optimal director exists.

The following algorithm computes an optimal director, denoted D∗, which is also a

DP-optimal director.

Algorithm 7 Input a trim acyclic plant G, the following steps computes an optimal

director D∗.

Initiation:

Set k = 1, Ωk = Xtm, ∀x ∈ Ωk : D∗(x) = ∅, ρ(x) = 0, Π(D∗\x) = 0, and ∀x ∈ Xm :

λ(x) = 0.

Iteration:

1. Let U be the set of all 1-step Ωk-attractable states, and for each x ∈ U , compute

the control action:

D∗(x) =





{σ∗} x ∈ Xe or Σu(x) = ∅

∅ otherwise
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where e∗ = (x, σ∗, x′) ∈ Ec(x) is an edge that belongs to the argument of

min
e∈Ec(x)

{max(λ(x′) + c(e), Π(D∗\x′)) | e = (x, σ, x′)}

(Note that choice of σ∗ in definition of D∗(x) need not be unique, indicating non-

uniqueness of optimal director.)

2. For each x ∈ U compute:

ρ1(x) =





λ(x′) + c(e∗) x ∈ Xe or Σu(x) = ∅

0 otherwise

ρ2(x) =





max
e∈Eu(x)

{λ(x′) + c(e) | e = (x, σ, x′)} Eu(x) 6= ∅

0 Eu(x) = ∅
ρ(x) = max(ρ1(x), ρ2(x))

3. For each x ∈ U , compute the set of edges in the optimally directed graph and the

cost of the optimal director rooted at state x:

ED∗(x) = {(x, σ, x′) ∈ E | σ ∈ D∗(x) ∪ Σu(x)}

Π(D∗\x) = max{max
x′∈Ωk

{Π(D∗\x′) | (x, σ, x′) ∈ ED∗(x)}, ρ(x)}

4. Set Ωk+1 = Ωk ∪ U , and for each x ∈ U −Xm, let λ(x) = ρ(x).

Termination:

• If x0 ∈ Ωk+1, then stop and GD∗ := (XD∗ , ED∗ , XD∗
m ) is the optimally directed

plant, where XD∗ := Ωk+1 and XD∗
m := Ωk+1 ∩Xm.

• If x0 6∈ Ωk+1, then set k = k + 1, and go to iteration step.
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Remark 17 It follows from analysis similar to that given in Remark 15 that the com-

putational complexity of Algorithm 7 is O(|X| × |Σ|)).

Before we prove the correctness of Algorithm 7, we present an example to aid the

understanding of the algorithm.
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Figure 5.1 Illustration of Algorithm 7

Example 7 The plant is shown in Figure 5.1. Note that edges with dashed line and

double solid arrows represent the transitions on sensor output while those with dashed

line and double hollow arrows represent the transitions on disturbance input. As Algo-

rithm 7 proceeds, it iteratively computes the values of Ωk, which is shown in Figure 5.1

as the set of states encircled. For each state x in the plant, the values of ρ(x) and

Π(D∗\x) are also shown beside x as a pair of numbers in parentheses.

Initiation:

Since Xtm = {x6} and Xm = {x6, x4, x3}, Ω1 = {x6}, D∗(x6) = ∅, ρ(x6) = 0,

Π(D∗\x6) = 0 and λ(x6) = λ(x4) = λ(x3) = 0.
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Iteration 1:

The state x5 is the only 1-step Ω1-attractable state. Therefore U = {x5}. Since no

uncontrollable events exist at x5, ρ(x5) = ρ1(x5) = 2, and the control action at x5 is the

selection of the event causing the transition from x5 to x6. We also obtain Π(D∗\x5) = 2,

Ω2 = {x6, x5} and λ(x5) = ρ(x5) = 2.

Iteration 2:

The only 1-step Ω2-attractable state is x4, and reasoning similarly as in the previous

iteration, we get ρ(x4) = 4, and control action at x4 is the selection of the event causing

the transition from x4 to x5. We also obtain Π(D∗\x4) = 4, Ω3 = {x6, x5, x4}.
Iteration 3:

x3 is the only 1-step Ω3-attractable state, and therefore U = {x3}. ρ1(x3) = 3, the

director selects the controllable transition from x3 to x6 even its cost is bigger than that

of the transition from x3 to x5. It is clear that the uncontrollable event causing the tran-

sition from x3 to x4 remains enabled, and ρ2(x3) = 7. So ρ(x3) = max(ρ1(x3), ρ2(x3)) =

ρ2(x3) = 7. Π(D∗\x3) is the maximum of the values ρ(x3), Π(D∗\x4), and Π(D∗\x6),

which is ρ(x3). Accordingly Π(D∗\x3) = 7. Finally Ω4 = {x3, x4, x5, x6}.
Iteration 4:

Both the states x1 and x2 are 1-step Ω4-attractable. Because x1 /∈ Xe and Σu(x1) 6= ∅,
ρ1(x1) = 0 while ρ2(x1) = λ(x3) + c(e′) = 3, where e′ is the uncontrollable transition

from x1 to x3. So, ρ(x1) = max(0, 3) = 3. The control action at x1 is to disable all the

controllable transitions. On the other hand, ρ(x2) = 4. Note that the transition from x2

to x4 is enabled even its cost is bigger than that of the transition from x2 to x3. This is

because the cost of director D\x2 is dominated by the cost of its sub-directors instead of

x2’s distance to the marked frontier states. Next, Π(D∗\x1) = 7, which is the maximum

of the values ρ(x1) and Π(D∗\x3). Similarly, Π(D∗\x2) = 4, which is the maximum of

the values ρ(x2) and Π(D∗\x4). Finally, Ω5 = {x1, x2, x3, x4, x5, x6}, λ(x1) = ρ(x1) = 3,

and λ(x2) = ρ(x2) = 4.
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Iteration 5:

x0 is 1-step Ω5-attractable. Again, the cost of director D\x0 = D is dominated by

the cost of its sub-directors instead of x0’s distance to the marked frontier states. So

the control action at x0 is to select the controllable edge from x0 to x2 and we have

ρ(x0) = ρ1(x0) = 6. Also, Ω6 = X and Π(D∗\x0) = 6.

Termination:

Since x0 ∈ Ω6, the algorithm terminates, and the cost of an optimal director is 6. The

final optimally directed system is shown in Figure 5.1.

In the remainder of this section we prove the correctness of Algorithm 7. We first

show that Algorithm 7 terminates.

Theorem 9 Algorithm 7 terminates, i.e., x0 ∈ Ωk+1 for some k ≥ 1.

Proof : It suffices to show that at each iteration step k ≥ 1 of Algorithm 7, at least

one state is added in Ωk+1. (So, from finiteness of |X|, x0 ∈ Ωk+1 for some k ≥ 1.) For

k = 1, Ω1 = Xtm 6= ∅ since G is trim. Pick any k > 1, and consider a state v 6∈ Ωk.

From Lemma 4, every path starting from v ends in Xtm within a finite number of steps.

Since Xtm ⊆ Ωk, every path starting from v ends in Ωk within a finite number of steps,

for example, within at most Nv steps. Then every path from a successor of v ends in Ωk

within at most Nv − 1 steps (since there are no cycles in G). Continuing this argument

further yields that there is a state reachable from v and it is 1-step attractable to Ωk.

Then this is a state that is added to Ωk+1 in the kth iteration step.

We next show that for any v ∈ XD∗ , Π(D∗\v) indeed equals the cost of director

D∗\v. We need the result of the following lemma, whose proof is analogous to that of

Lemma 3, and hence omitted.

Lemma 5 For all v ∈ XD∗ , it holds that ρ(v) = dGD∗ (v).

The following corollary is an immediate consequence of Lemma 5 and Theorem 6.
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Corollary 2 For all v ∈ XD∗ , it holds that P (D∗\v) = Π(D∗\v) = maxu∈XD∗\v ρ(u).

By replacing v with x0 in the above corollary, and noting that D∗\x0 = D∗, we

obtain: P (D∗) = maxu∈XD∗ ρ(u).

Thus far we have shown that Algorithm 7 terminates, and correctly computes the

cost of director D∗ that is constructed. It remains to show that D∗ is optimal, which

we establish next.

Theorem 10 Given a plant G, the director D∗ computed by Algorithm 7 is a DP-

optimal director for G.

Proof : We need to show that for any v ∈ XD∗ , the director D∗\v is a DP-optimal

director rooted at v. Since v ∈ XD∗ , there exists k ≥ 1 such that v ∈ Ωk. The proof is

based upon induction on k. If k = 1, then v ∈ Xtm, and so clearly D∗(v) = ∅ is the only

and hence a DP-optimal control action at v. Next, suppose v ∈ Ωk+1 for some k ≥ 1.

From induction hypothesis, D∗\u is a DP-optimal director rooted at u for all u ∈ Ωk.

Suppose for contradiction that there exists an optimal director D such that

P (D\v) < P (D∗\v) = Π(D∗\v), (5.1)

where the equality follows from Corollary 2. It must be that D(v) 6= D∗(v), i.e., the two

directors select different control actions at v, otherwise it would follow that P (D\v) =

P (D∗\v). When v ∈ Xe or Σu(v) = ∅,

P (D\v) = max
({

max
(
λ(v′) + c(e), Π(D∗\v′)) |

e = (v, σ, v′) ∈ Ec(v) and D(v) = {σ}}, ρ2(v)
)

P (D∗\v) = max
(

min
e∈Ec(v)

{
max

(
λ(v′) + c(e), Π(D∗\v′)) | e = (v, σ, v′)

}
, ρ2(v)

)

When v /∈ Xe and Σu(v) 6= ∅, P (D\v) = P (D∗\v) = ρ2(v). In both cases, P (D\v) ≥
P (D∗\v), which is a contradiction.
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5.2 Application example
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Figure 5.2 Synthesis of an optimal director for the application example

We provide an application example to demonstrate our result. The application is of

train-traffic control over a set of track sections. As shown in Figure 5.2(a), eight sections

of tracks labeled from 1 to 8 are separated by some traffic lights and switches. In each

section, trains can only travel in the directions as indicated by the arrows. Suppose

initially two trains T1 and T2 are in the section 1 and 2, respectively. We are required

to synthesize an optimal director to control the traffic lights and switches to ensure T1
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and T2 eventually go to the section 8 and 7, respectively.

We model the movement of T1 and T2 by two automata G1 and G2, respectively,

shown in the Figure 5.2(b). The cost associated with each edge in G1 (resp. G2) is the

amount of time taken by the train T1 (resp. T2) to go from the source section to the

destination section of the edge. Note that since both trains can only move forward, both

G1 and G2 are acyclic. Also note that the way traffic lights and switches are placed,

the events corresponding to transitions between the section 4 and 6, and between the

section 5 and 7 for both trains are uncontrollable. Also these uncontrollable events are

not disturbance inputs, and represent elements of the set Σu − Σd.

The combined movement of two trains is given by the composition of automata G1

and G2, denoted as G1||G2. The corresponding automaton is shown in Figure 5.2(c),

where the state “12” is the initial state, the state “87” is the only marked state, and

the scenarios that two trains are in the same section are represented by illegal states,

which are identified by having costs of all incoming edges to be infinity. Note that in the

composed automaton, each edge represents the movement of one of the two trains, and

so the cost of such an edge is taken to be the same as the cost of corresponding edge in

the corresponding train model. Also since both G1 and G2 are acyclic, so is G1||G2.

We apply Algorithm 5 on G1||G2 and obtain the automaton shown in Figure 5.2(d).

This automaton has no infinite-cost edges and obviously is acyclic. Algorithm 7 is then

applied to compute an optimal director. The synthesis process is also shown in Figure

5.2(d) where distance from each state to its marked frontier states has been identified.

After trimming, the resulting optimal director is obtained and shown in Figure 5.2(e).

The control strategy implemented by this optimal director is summarized as follows.

We first guide T1 from the section 1 to the section 8 via the section 3, 6 and 7. Then we

guide T2 from the section 2 to the section 7 via the section 5. The cost of this director

is shown to be 14.
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CHAPTER 6. OPTIMAL DIRECTOR FOR GENERAL

PLANT

6.1 Synthesis of optimal director for general plant

An algorithm (Algorithm 7) to compute an optimal director for acyclic plants with

complexity that is polynomial in the number of plant states was presented in the previous

chapter. It is based on the observation that the region of attraction of the set of termi-

nating marked states is the whole state set in a trim acyclic plant, i.e., X ⊆ Ω(Xtm). Al-

gorithm 7 constructs the region of attraction of Xtm iteratively: it starts with Ω1 = Xtm;

in the kth iteration, all the states that are 1-step attractable to Ωk are combined with Ωk

to form the state set Ωk+1. For each added state x, Algorithm 7 optimizes the control

action by comparing all the feasible transitions from x to the states in Ωk. Note that

the value of ρ(x) and Π(D∗\x) computed by Algorithm 7 represents x’s distance (to its

marked frontier states) in GD∗ and the cost of the director rooted at x, respectively.

In general, a plant model can contain cycles and in which case Algorithm 7 is not

applicable. This situation is illustrated by the following examples.

Example 8 Consider a plant G shown in Figure 6.1(a). Algorithm 7 starts with Ω1 =

{x3}. Due to the cycle between x1 and x2, neither x1 nor x2 is 1-step attractable to Ω1

and thus Algorithm 7 can not proceed or terminate because X ⊆ Ω(Xtm) no longer holds

in this case. An optimal director for G, however, does exist, which yields the optimally

directed plant as shown in Figure 6.1(b) with the director cost of 4.
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Example 9 Consider another plant G shown in Figure 6.1(c). In this case there is

no terminating marked state and so Algorithm 7 does not even start. Suppose we let

Algorithm 7 start from all marked states (including the non-terminating marked states),

then since both x1 and x2 are marked states, we will have Ω1 = {x1, x2}. Then Algorithm

7 will compute the values of ρ(x) and Π(D∗\x) for each state x. Each state in Figure

6.1(c) is labeled with such a pair of numbers. When Algorithm 7 terminates, it will

disable the transition from x0 to x1 while enable that from x0 to x2. The resulting

directed plant is shown in Figure 6.1(d) with the director cost of 9. However, the

optimally directed plant should be the one shown in Figure 6.1(e), with the director cost

of 7.
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5 3
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Figure 6.1 Application of Algorithm 7 on plants with cycles

Note that Algorithm 7 is “greedy” or “locally optimal” in the sense that when com-

puting Ω2 = Ω1 ∪ {x0}, it picks the edge from x0 to x2 with the cost of 3 instead of
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the edge from x0 to x1 with the cost of 5. This ignores the fact that the distance of

x2 is 6, larger than the distance of x1, which is 2. Since the cost of a director is de-

termined by the worst distance among those of the initialization states (see Equation

4.3), the above “locally optimal” selection is not “globally optimal”. If, however, the

set of marked states to be present in a trim optimally directed plant could be identified,

then Algorithm 7 could be forced to consider only those marked states. For example, by

omitting x2 in Ω1, Algorithm 7 would be forced to pick the edge from x0 to x1 and yields

an optimal director. Thus by trying all subsets of Xm as a choice for Ω1 and applying a

locally optimal algorithm, a globally optimal director could be obtained. However, such

a strategy could have complexity that is exponential in the number of marked states.

We will show that not all subsets of Xm need to be considered as a choice for Ω1, which

is the key to a polynomial complexity algorithm.

We present a two-step algorithm in this paper. We first provide a synthesis algorithm

(Algorithm 8) that is applicable for general plant models, cyclic or acyclic. The director

computed by Algorithm 8 is “locally optimal” in the sense that the distance of each

state under directed control is minimized. We then present another algorithm (Algo-

rithm 9) which iteratively applies Algorithm 8 on different input plants starting from

G and compares the resulting directors from various iterations. During each iteration,

Algorithm 9 removes the states with the maximum distance to produce the input plant

for the next iteration. It will be shown that among all the directors computed during

iterations of Algorithm 9, the one with the minimum cost is indeed optimal.

It will also be shown that Algorithm 8 is of polynomial complexity in the number of

plant states, and the number of times in which Algorithm 8 is executed inside Algorithm

9 is at most one more than the number of non-terminating marked states. So the overall

complexity of synthesis of an optimal director remains polynomial in the plant size.

We first present Algorithm 8.
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Algorithm 8 Input a plant G := (X, E,Xm), the following steps compute a “locally

optimal” director D¦ and the distance of each state x ∈ X under the control of D¦.

Initiation:

Set k = 1, Ωk = Xm, Ω′
k = Xtm, ∀x ∈ Ωk : λ(x) = 0 and ∀x ∈ Ω′

k : D¦(x) = ∅ and

ρ(x) = 0.

Iteration:

1. Let Uk be the set of all 1-step directively Ωk-attractable states excluding those in

Ω′
k, i.e.,

Uk := {x ∈ X − Ω′
k | α(x, Σ) ∩ Ωk 6= ∅, α(x, Σu) ⊆ Ωk and

x ∈ Xe ⇒ α(x, Σc) ∩ Ωk 6= ∅}

2. For each x ∈ Uk, we define

Eck
(x) := {e = (x, σ, x′) ∈ Ec(x) | x′ ∈ Ωk}

and compute the following:

Dk(x) =





{σk} x ∈ Xe or Σu(x) = ∅

∅ otherwise

such that ek = (x, σk, x
′) ∈ Eck

(x) is any edge that belongs to the argument of

min
e∈Eck

(x)
{λ(x′) + c(e) | e = (x, σ, x′)}

ρc
k(x) =





λ(x′) + c(ek) x ∈ Xe or Σu(x) = ∅

0 otherwise

ρu
k(x) =





max
e∈Eu(x)

{λ(x′) + c(e) | e = (x, σ, x′)} Eu(x) 6= ∅

0 Eu(x) = ∅
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ρ¦k(x) = max(ρc
k(x), ρu

k(x))

EDk(x) = {(x, σ, x′) ∈ E | σ ∈ Dk(x) ∪ Σu(x)}

3. Let Vk ⊆ Uk be the set of states that belong to the argument of minx∈Uk
ρ¦k(x).

For each state x ∈ Vk, set ρ(x) = ρ¦k(x), D¦(x) = Dk(x) and ED¦(x) = EDk(x). If

x /∈ Xm, then let λ(x) = ρ(x).

4. Set Ωk+1 = Ωk ∪ Vk and Ω′
k+1 = Ω′

k ∪ Vk.

Termination:

• If Uk = ∅, then stop. Set ρ(x) = ∞ for each state x ∈ X − Ω′
k and define

P (D¦) := maxx∈I(GD¦ ) ρ(x).

• If Uk 6= ∅, then continue iteration with k = k + 1.

Remark 18 At each iteration, at least one state is added into Ω′
k and so there is a

maximum of |X| iterations. Also for each iteration, we perform certain computations

for those states that are 1-step directively Ωk-attractable. The complexity of this step

is linear in the number of such states and the number of their edges. So, the overall

complexity of Algorithm 8 is O(|X| × |Σ|).

We present an example to aid the understanding of Algorithm 8.

Example 10 The plant is shown in Figure 6.2, where an edge with double arrows rep-

resents a transition on an uncontrollable event and an edge with single arrow represents

a transition on a controllable event. Note that all the uncontrollable events in the plant

are disturbance inputs, so we have Xe = {x6} and the only controllable transition at x6

should not be disabled by any director. As Algorithm 8 proceeds, it iteratively computes

the values of Ωk, which is shown in Figure 6.2 as the set of states encircled. For each

state x in the plant, the values of λ(x), ρ(x) are also shown as a pair beside the state x.
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Figure 6.2 Example for Algorithm 8

Initiation:

Since Xtm = ∅ and Xm = {x3, x4}, Ω1 = {x3, x4}, Ω′
1 = ∅ and λ(x3) = λ(x4) = 0.

Iteration 1:

The states x0, x1 and x2 are all 1-step directively attractable to Ω1. Therefore U1 =

{x0, x1, x2}. Since ρ¦1(x1) is the minimum among ρ¦1(x0), ρ¦1(x1) and ρ¦1(x2), we get

V1 = {x1} and ρ(x1) = λ(x1) = 2. We have Ω2 = Ω1 ∪ V1 = {x1, x3, x4} and Ω′
2 =

Ω′
1 ∪ V1 = {x1}.

Iteration 2:

The states x0 and x2 are both 1-step directively attractable to Ω2. Therefore U2 =

{x0, x2}. Since ρ¦2(x0) is the minimum between ρ¦2(x0) and ρ¦2(x2), we get V2 = {x0} and
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ρ(x0) = λ(x0) = 3. The control selection at x0 is to select the controllable transition

from x0 to x4. We have Ω3 = Ω2 ∪ V2 = {x0, x1, x3, x4} and Ω′
3 = Ω′

2 ∪ V2 = {x0, x1}.
Iteration 3:

The states x2 and x3 are both 1-step directively attractable to Ω3. Therefore U3 =

{x2, x3}. Since ρ¦3(x3) is the minimum between ρ¦3(x2) and ρ¦3(x3), we get V3 = {x3} and

ρ(x3) = 5. We have Ω4 = Ω3 ∪ V3 = {x0, x1, x3, x4} and Ω′
4 = Ω′

3 ∪ V3 = {x0, x1, x3}.
Iteration 4:

The state x2 is the only state that is 1-step directively attractable to Ω4. Therefore

U4 = {x2}, V4 = {x2} and ρ(x2) = λ(x2) = 6. We have Ω5 = Ω4∪V4 = {x0, x1, x2, x3, x4}
and Ω′

5 = Ω′
4 ∪ V4 = {x0, x1, x2, x3}.

Iteration 5:

The state x4 is the only state that is 1-step directively attractable to Ω5. Therefore

U5 = {x4}, V5 = {x4} and ρ(x4) = 11. We have Ω6 = Ω5 ∪ V5 = {x0, x1, x2, x3, x4} and

Ω′
6 = Ω′

5 ∪ V5 = {x0, x1, x2, x3, x4}.
Termination:

Since U6 = ∅, the algorithm terminates. Note that ρ(x5) = ρ(x6) = ρ(x7) = ∞. The

directed plant is shown in Figure 6.2(h) with the control cost of 11. Note that the

director computed by Algorithm 8 may not be optimal. The optimally directed plant

for this example should be the one shown in Figure 6.2(i) with the control cost of 9.

The function ρ : X → R computed by Algorithm 8, where R denotes non-negative

reals including infinity, is called the distance function of D¦. The value of ρ(x) for each

state x ∈ XD¦ represents the distance of x under the control of D¦, i.e., we have following

theorem.

Theorem 11 Given a plant G := (X, E,Xm) and consider the notation of Algorithm

8. It holds that ∀x ∈ XD¦ : ρ(x) = dGD¦ (x).



www.manaraa.com

68

Proof : We prove by induction on the iteration ordinal k of Algorithm 8. Since Ω′
1 = Xtm

and ∀x ∈ Ω′
1 : D¦(x) = ∅ and ρ(x) = 0, the base step trivially holds.

Assume for induction that the theorem holds for the states of Ω′
k, we need to show

the theorem holds for the states of Ω′
k+1 = Ω′

k ∪ Vk.

Consider a state x ∈ Vk. Then from the definition of 1-step directive attractability, for

every edge e = (x, σ, x′) ∈ ED¦ , we have x′ ∈ Ωk. Note that Ωk ⊇ Ω′
k and Ωk−Ω′

k ⊆ Xm.

So either x′ ∈ Ω′
k −Xm or x′ ∈ Xm.

If x′ ∈ Ω′
k−Xm, then it follows from the induction hypothesis that ρ(x′) = dGD¦ (x′).

Furthermore, from the construction of the algorithm, we have λ(x′) = ρ(x′) = dGD¦ (x′).

If x′ ∈ Xm, then we have λ(x′) = 0. Using these values of λ(x′), and applying definition

of ρ(x) = ρ¦k(x), we obtain:

ρ(x) = max{λ(x′) + c(e) | e = (x, σ, x′) ∈ ED¦}

= max{d1, d2}

where

d1 := max{dGD¦ (x′) + c(e) | e = (x, σ, x′) ∈ ED¦ , x′ 6∈ Xm}

d2 := max{0 + c(e) | e = (x, σ, x′) ∈ ED¦ , x′ ∈ Xm}

Then the result follows from Equation (4.1).

We claim that for each state x ∈ XD¦ , the value of ρ(x) computed by Algorithm 8

is the minimum distance of x under directed control. We need the following lemma to

establish this claim.

Lemma 6 Consider the notation of Algorithm 8, assume Algorithm 8 terminates after

the nth iteration for some n > 0 and let xk ∈ Vk be any state of Vk, then 0 < ρ(x1) <

ρ(x2) < . . . < ρ(xk) < . . . < ρ(xn).

Proof : Note that for any two states x̂ ∈ Vk and x̄ ∈ Vk, we have ρ(x̂) = ρ(x̄) =

minx∈Uk
ρ¦k(x).
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We prove the lemma by induction on the iteration ordinal k of Algorithm 8. We first

show that the base step holds, i.e., 0 < ρ(x1). Since only terminating marked states

have the distance of 0 and x1 /∈ Ω′
k = Xtm, it follows from Theorem 11 that ρ(x1) =

dGD¦ (x1) > 0. Assume for induction that the lemma holds after the kth iteration, i.e.,

0 < ρ(x1) < ρ(x2) < . . . < ρ(xk). We need to show ρ(xk) < ρ(xk+1).

Clearly, xk+1 ∈ Uk+1. So either xk+1 ∈ Uk+1 ∩ Uk or xk+1 ∈ Uk+1 − Uk.

For the latter case, xk+1 is 1-step directively attractable to Ωk+1 but not 1-step

directively attractable to Ωk. So there must exist an edge e = (x, σ, x′) ∈ ED¦(xk+1)

such that xk+1 = x and x′ ∈ Vk −Xm. Since x′ /∈ Xm, it follows that ρ(xk+1) > λ(x′) =

ρ(x′) = ρ(xk).

For the former case, xk+1 is 1-step directively attractable to Ωk. However, xk+1 /∈ Vk

and ρ(xk) = minx∈Uk
ρ¦k(x), so it must be ρ¦k(xk+1) > ρ¦k(xk) = ρ(xk). The computation

of ρ¦k+1(xk+1) differs from that of ρ¦k(xk+1) if there is at least one edge e = (x, σ, x′) ∈
ED¦(xk+1) such that xk+1 = x and x′ ∈ Vk −Xm. If such an edge exists, then ρ(xk+1) =

ρ¦k+1(xk+1) ≥ max((λ(x′) + c(e)), ρ¦k(xk+1)) > ρ(xk). If such an edge doesn’t exist, then

we have ρ(xk+1) = ρ¦k+1(xk+1) = ρ¦k(xk+1) > ρ(xk).

With Lemma 6 in hand, we are ready to prove our claim in the following theorem.

Theorem 12 Given a plant G := (X, E,Xm) and consider the notation of Algorithm

8. It holds that ∀x ∈ XD¦ : ρ(x) = minD dGD(x).

Proof : Suppose x̂ is the state that belongs to the argument of minx∈Uk
ρ¦k(x) in the

kth iteration of Algorithm 8, then we have ρ(x̂) = ρ¦k(x̂) = max(ρc
k(x̂), ρu

k(x̂)). To show

ρ(x̂) is the minimum distance of x̂, we only need to show ρc
k(x̂) is not greater than

mine∈Ec(x̂){λ(x′)+ c(e) | e = (x̂, σ, x′)} since ρu
k(x̂) is fixed for any iteration of Algorithm

8. Note that ρc
k(x̂) is not greater than mine∈Eck

(x̂){λ(x′) + c(e) | e = (x̂, σ, x′)} such that

x′ ∈ Ωk due to the definition of ρc
k(x̂). So we just need to show ρc

k(x̂) is not greater than

λ(x̄) + c((x̂, σ, x̄)) for any state x̄ /∈ Ωk.
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It is clear that x̄ /∈ Xm because Xm ⊆ Ωk for any k. It follows that λ(x̄) = ρ(x̄).

Since x̄ /∈ Ωk, so x̄ /∈ Ω′
k, then ρ(x̄) is computed in some ith iteration of Algorithm 8

such that i > k or ρ(x̄) = ∞. Then it follows from Lemma 6 that ρ(x̄) > ρ(x̂), so

ρc
k(x̂) ≤ ρ(x̂) < ρ(x̄) = λ(x̄) < λ(x̄) + c((x̂, σ, x̄)).

Next we present an algorithm that computes an optimal director by applying Algo-

rithm 8 iteratively on different input plants starting from G. During the kth iteration,

the input plant Gk is processed to derive the next input plant Gk+1, which is a sub-plant

of Gk. This is conceptually illustrated by Figure 6.3. (Note that all the uncontrollable

events in Figure 6.3 are disturbance inputs.)

Algorithm 9 Input a plant G := (X, E, Xm), the following steps compute an optimal

director D∗.

Initiation:

1. Set k = 1 and Gk = G.

2. Apply Algorithm 8 on Gk. We denote the resulting director and its distance

function as Dk and ρk, respectively.

3. D∗ = Dk.

Iteration:

1. Ik := I(GDk
k ).

2. Let Vk ⊆ Ik be the set of states that belong to the argument of maxx∈Ik
ρk(x).

3. If x0 ∈ Vk, then skip the remaining iteration steps.

4. Gk+1 := Gk \ Vk, where Gk \ Vk represents the operation to reduce Gk to a trim

plant in which the states of Vk are removed. This can be accomplished by setting

the cost of all incoming edges to Vk to be ∞ (so that the states of Vk are seen as
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“illegal” states) and then by applying Algorithm 5 (presented in the Chapter 4)

on the resulting modified Gk.

5. If Gk+1 = ∅, then skip the remaining iteration steps.

6. Apply Algorithm 8 on Gk+1. We denote the resulting director and its distance

function as Dk+1 and ρk+1, respectively.

7. If P (D∗) ≥ P (Dk+1), then set D∗ = Dk+1.

Termination:

• If x0 ∈ Vk or Gk+1 = ∅, then stop. If P (D∗) = ∞, then there exists no optimal

director, otherwise the optimal director is D∗.

• If x0 /∈ Vk and Gk+1 6= ∅, then continue the iteration with k = k + 1.

Vk

WkGk

Gk+1

Figure 6.3 Illustration of input plants for Algorithm 9
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Remark 19 Algorithm 9 iteratively applies Algorithm 8 on different input plants and

compares the results. It also uses Algorithm 5 to derive the input plant for the next

iteration. It is clear that there is a maximum |Xm −Xt|+ 1 (resp. |Xm −Xt|) number

of executions of Algorithm 8 (resp. Algorithm 5) inside Algorithm 9. Note that the

complexity of Algorithm 8 and that of Algorithm 5 are both O(|X|×|Σ|). So the overall

complexity of Algorithm 9 is O(|X| × |Σ| × (|Xm − Xt| + 1)), which is linear in the

number of states, events and non-terminating mark states of G.

We present an example to aid the understanding of Algorithm 9.
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(h)   Optimally directed plant
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Figure 6.4 Example for Algorithm 9
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Example 11 The plant G is the same as in Example 10 and repeats in Figure 6.4(a).

In the initiation, Algorithm 9 applies Algorithm 8 on G1 = G. The resulting plant is

repeated in Figure 6.4(b) with cost of control being P (D1) = 11. From Figure 6.4(b),

we can see ρ1(x4) > ρ1(x3) > ρ1(x0), so in the 1st iteration of Algorithm 9, {x4} is

removed and the resulting (trim) plant is denoted as G2 and shown in Figure 6.4(c).

Next we apply Algorithm 8 on G2, whose progress is illustrated in Figure 6.4(c)-6.4(g),

with the text inside parentheses in the captions tracking the progress. Then we have

GD2 as shown in Figure 6.4(h) with cost of control being P (D2) = 9.

Since ρ2(x3) > ρ2(x0), Algorithm 9 then removes {x3}. The resulting (trim) plant

G3 is empty, so Algorithm 9 terminates with optimal director as D∗ = D2.

Remark 20 We use Wk := X(Gk) − X(Gk+1) to represent the set of states removed

(by Algorithm 5) during the kth iteration of Algorithm 9 (if x0 /∈ Vk), as illustrated by

Figure 6.3. Note that Wk contains not only the states of Vk but also the states that have

at least one path visiting Vk in all directed plants and the states that should be trimmed

away if the above states are absent. Also note that both Gk and Gk+1 are trim. So for

any director D, it holds that Wk ∩XD 6= ∅ if and only if Vk ∩XD 6= ∅.

Next we prove the correctness of Algorithm 9. We need two lemmas, which assume

the following notation: Let m be the last iteration ordinal of Algorithm 9, i.e., Algorithm

9 terminates after the mth iteration; let n be the largest iteration ordinal such that

P (Dn) = P (D∗), i.e., n = max0<k≤m{k | P (Dk) = P (D∗)}.
The first lemma shows that the states removed before the nth iteration should not

exist in some trim optimally directed plant.

Lemma 7 Given a plant G, consider the notation of Algorithm 9 and that for n stated

above. If there exists an optimal director for G, then there exists an optimal director D

for G such that (X(G1)−X(Gn)) ∩XD = ∅.
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Proof : We prove by induction on the iteration ordinal k of Algorithm 9 for any 0 < k ≤
n. It is clear that the base step trivially holds, i.e., if there exists an optimal director for

G, then there exists an optimal director D for G such that (X(G1)−X(G1))∩XD = ∅.
For induction hypothesis, assume that there exists an optimal director D such that

(X(G1) −X(Gk))∩XD = ∅ for any 0 < k < n. We need to show there exists an optimal

director D′ such that (X(G1)−X(Gk+1)) ∩XD′ = ∅.
Assume for contradiction that there exists a state xk ∈ (X(G1) − X(Gk+1)) ∩ XD

for any optimal D such that ((X(G1) − X(Gk)) ∩ XD = ∅ and 0 < k < n. Then

xk ∈ Wk ∩XD. So it follows (from Remark 20) that there exists a state x′k ∈ Vk ∩XD.

Note that x′k belongs to the argument of maxx∈Ik
ρk(x). Also note that P (Dn) ≤

P (Dk) holds for any 0 < k < n, so ρk(x
′
k) = P (Dk) ≥ P (Dn).

Since Gk is a sub-plant of G1 = G and ((X(G1)−X(Gk)) ∩XD = ∅, we have ∀x ∈
XD : dGD(x) = dGD

k
(x). Then it follows from Theorem 12 that dGD(x′k) = dGD

k
(x′k) ≥

ρk(x
′
k).

Therefore P (D) ≥ dGD(x′k) ≥ ρk(x
′
k) = P (Dk) ≥ P (Dn). Since D is optimal,

P (D) ≤ P (Dn) also holds, so it follows that P (D) = P (Dn), which implies Dn is

optimal. Since X(G1) ⊇ X(Gk) ⊇ X(Gn) holds for any 0 < k < n, we have (X(G1) −
X(Gk+1)) ∩X(Gn) = ∅. It is clear that XDn ⊆ X(Gn), then it follows that (X(G1) −
X(Gk+1)) ∩XDn = ∅, which is a contradiction.

Hence if there exists an optimal director for G, then there exists an optimal director

D for G such that (X(G1)−X(Gn)) ∩XD = ∅.
The next lemma shows that certain states removed during and after the nth iteration

should exist in some trim optimally directed plant.

Lemma 8 Given a plant G, consider the notation of Algorithm 9 and those for m and

n stated above. If there exists an optimal director D for G such that (X(G1)−X(Gn))∩
XD = ∅ and m 6= n, then Wn ∩XD 6= ∅.
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Proof : We first prove by induction on the iteration ordinal k of Algorithm 9 that

(X(G1)−X(Gk)) ∩XD 6= ∅ for n < k ≤ m.

We show the base step holds, i.e., (X(G1)−X(Gm)) ∩XD 6= ∅. Assume for contra-

diction that (X(G1)−X(Gm)) ∩XD = ∅.
If x0 ∈ Vm, then x0 belongs to the argument of maxx∈Im ρm(x). Also note that

P (Dn) < P (Dk) holds for any n < k ≤ m. Then it follows from Theorem 12 that

P (D) ≥ dGD(x0) = dGD
m
(x0) ≥ ρm(x0) = P (Dm) > P (Dn), which is a contradiction to

the optimality of D. If x0 /∈ Vm, then Gm+1 = ∅ and we have Wm = X(Gm)−X(Gm+1) =

X(Gm). Since x0 ∈ X(Gm) ∩ XD, we have X(Gm) ∩ XD = Wm ∩ XD 6= ∅. Then it

follows (from Remark 20) that Vm ∩ XD 6= ∅. Pick any state xm ∈ Vm ∩ XD, then

xm belongs to the argument of maxx∈Im ρm(x). It follows that P (D) ≥ dGD(xm) =

dGD
m
(xm) ≥ ρm(xm) = P (Dm) > P (Dn), which is also a contradiction to the optimality

of D. Therefore (X(G1)−X(Gm)) ∩XD 6= ∅.
For induction hypothesis, assume that (X(G1)−X(Gk)) ∩XD 6= ∅ for any n + 1 <

k ≤ m. We need to show (X(G1)−X(Gk−1)) ∩XD 6= ∅.
Assume for contradiction that (X(G1)−X(Gk−1))∩XD = ∅. So ∀x ∈ XD : dGD(x) =

dGD
k−1

(x). Since (X(G1) − X(Gk)) ∩ XD 6= ∅, there exists a state xk−1 ∈ (X(Gk−1) −
X(Gk)) ∩ XD = Wk−1 ∩ XD. Then it follows (from Remark 20) that there exists a

state x′k−1 ∈ Vk−1 ∩XD. Note that x′k−1 belongs to the argument of maxx∈Ik−1
ρk−1(x).

Then it follows from Theorem 12 that P (D) ≥ dGD(x′k−1) = dGD
k−1

(x′k−1) ≥ ρk−1(x
′
k−1) =

P (Dk−1) > P (Dn), which is a contradiction to the optimality of D. Therefore (X(G1)−
X(Gk−1)) ∩XD 6= ∅.

So we have proved that (X(G1) − X(Gk)) ∩ XD 6= ∅ for any n < k ≤ m. Note

that (X(G1) − X(Gn)) ∩ XD = ∅. So we have (X(Gn) − X(Gn+1)) ∩ XD 6= ∅. Hence

Wn ∩XD 6= ∅.
With Lemma 7 and 8 in hand, the correctness of Algorithm 9 is established as follows.
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Theorem 13 Given a plant G, consider the notation of Algorithm 9 and those for m

and n stated above. If there exists an optimal director for G, then the director D∗

computed by Algorithm 9 is optimal.

Proof : If m = n and there exists an optimal director for G, then it follows from Lemma

7 that there exists an optimal director D for G such that (X(G1)−X(Gm)) ∩XD = ∅.
So ∀x ∈ XD : dGD(x) = dGD

m
(x).

If x0 ∈ Vm, then x0 belongs to the argument of maxx∈Im ρm(x). Then it follows from

Theorem 12 that P (D) ≥ dGD(x0) = dGD
m
(x0) ≥ ρm(x0) = P (Dm) = P (Dn) = P (D∗).

Since D is optimal, P (D) ≤ P (D∗) also holds, so it follows that P (D) = P (D∗), which

implies D∗ is optimal. If x0 /∈ Vm, then Gm+1 = ∅ and we have Wm = X(Gm) −
X(Gm+1) = X(Gm). Since x0 ∈ X(Gm) ∩XD, we have X(Gm) ∩XD = Wm ∩XD 6= ∅.
Then it follows (from Remark 20) that Vm ∩ XD 6= ∅. Pick any state xm ∈ Vm ∩ XD,

then xm belongs to the argument of maxx∈Im ρm(x). It follows that P (D) ≥ dGD(xm) =

dGD
m
(xm) ≥ ρm(xm) = P (Dm) = P (Dn) = P (D∗). Since D is optimal, P (D) ≤ P (D∗)

also holds, so it follows that P (D) = P (D∗), which implies D∗ is optimal.

If m 6= n and there exists an optimal director for G, then it follows from Lemma 7 and

8 that there exists an optimal director D for G such that (X(G1) −X(Gn)) ∩XD = ∅
and Wn ∩ XD 6= ∅. So ∀x ∈ XD : dGD(x) = dGD

n
(x). Also it follows (from Remark

20) that there exists a state xn ∈ Vn ∩ XD. Note that xn belongs to the argument of

maxx∈In ρn(x). Then it follows from Theorem 12 that P (D) ≥ dGD(xn) = dGD
n
(xn) ≥

ρn(xn) = P (Dn) = P (D∗). Again since D is optimal, P (D) ≤ P (D∗) also holds, so it

follows that P (D) = P (D∗), which implies D∗ is optimal.

It is clear that Algorithm 9 can be used to check the existence of an optimal director.

So the existence and the synthesis of an optimal director for general plants are both

polynomially solvable.
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6.2 Application example
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Figure 6.5 Synthesis of an optimal director for the application example

We provide an application example to demonstrate our result. The application is of

train-traffic control over a set of track sections. As shown in Figure 6.5(a), nine sections

of tracks labeled from 1 to 9 are separated by some traffic lights and switches. The

traffic lights can be used to stop the traffic in the directions as indicated by the arrows

above the lights, but have no effect for the traffic in the opposite directions. Suppose

initially a train is in the section 1. We are required to synthesize an optimal director to

control the traffic lights and switches to ensure the train eventually reach the section 6

or 9.

We model the movement of the train by a plant G, shown in the Figure 6.5(b), with

the state “1” as the initial state, and the states “6” and “9” as marked states. The

cost associated with each edge of G is the amount of time taken by the train to go from



www.manaraa.com

78

the source section to the destination section of the edge. Also note that the way traffic

lights and switches are placed, the events corresponding to transitions from the section

4 to 8 and from the section 6 to 7 are (uncontrollable) disturbance inputs, whereas all

other transitions are controllable.

We apply Algorithm 9 on G. After initiation, we obtain the directed plant with

control cost of 10, shown in Figure 6.5(c). For each state x in the plant, we show

the values λ(x), ρ(x) as a pair of numbers beside the state x. We then execute the

1st iteration of Algorithm 9 and the algorithm terminates thereafter, which yields the

optimally directed plant with the control cost of 8, shown in Figure 6.5(d). The trim

optimally directed plant is shown in Figure 6.5(e).

The control strategy implemented by this optimal director is summarized as follows.

We first guide the train from the section 1 to the section 7 via the section 3. Then we

guide the train from the section 7 to the section 9 via the section 8.
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CHAPTER 7. CONCLUSION

7.1 Summary

For the logic control of discrete event systems, prevailing work deals with the notion

of supervisory control. A supervisory controller computes a maximal allowable set of

controllable events at each state, but leaving undecided exactly which one is to be

enabled. In this work, we have introduced the notion of directed control, which refines

that of supervisory control.

A directed controller selects at most one controllable event to be enabled at any state

while keeping all uncontrollable event enabled. This mechanism is in fact how a discrete

event control is implemented and it becomes more relevant when the plant under control

is an executor of controllable events rather than a generator of those. In addition, we

divide the uncontrollable events into the disturbance inputs and the sensor outputs, and

enrich the notion of non-terminating marked states to come up with a more meaningful

and useful control strategy.

To understand how a plant under directed control works, we have modeled and an-

alyzed the system using predominant automaton formalism. With modeling techniques

at our disposal, we have designed control so as to achieve the desired controlled system

behaviors. Our first goal is logical correctness as specified using safety and nonblocking.

Subsequently we have addressed the best performance issue by providing an optimiza-

tion based framework. The optimization task is to direct a system in such a way that

regardless of the history of evolution, it accomplishes a pending task in a minimal cost.
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Without loss in generality, we have formulated and studied the existence and syn-

thesis problems in a state-based setting. We have showed that a safe and nonblocking

directed controller exists if and only if a safe and nonblocking supervisory controller

exists. The complexity of existence and synthesis of a safe and nonblocking directed

controller is then shown to be polynomial in the size of plant, and is the same as that

of a safe and nonblocking supervisory controller.

Next, we have obtained a test for verifying the existence of an optimal directed

controller. An algorithm of polynomial complexity has been presented for solving the

optimal directed control problem for systems that are cycle-free. The solution is proved

to be dynamic-programming optimal.

Finally we have developed a novel approach with polynomial complexity for the

synthesis (and existence) of an optimal directed controller for general plants. This is

accomplished in two steps, the first of which finds a “locally optimal” directed controller

using a “greedy” search, and the second step iteratively refines the search space for the

greedy search. The final result provides a complete solution to all the existence and

synthesis problems in discussion.

7.2 Future research

7.2.1 Directed control under partial observation

7.2.1.1 Notion of directed control under partial observation

It is assumed in the previous work that a director is capable of observing the oc-

currence of all events that plants execute. In many situations, it is difficult, if not

impossible, for a director to observe all events due to limitations of the sensors or the

distributed nature of some systems where events at some locations are not seen at other

locations [15][8].
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Thus, a particular event may be completely unobservable to a director, or two dif-

ferent events may be indistinguishable to a director. The presence of such partial obser-

vation can be captured by defining an observation projection (or mask) from the set of

events to the set of “observed events” P : Σ → ∆ ∪ {ε}. If an event is mapped to {ε},
then the corresponding event is unobservable to a director. Similarly, if two events are

mapped to the same observed event, then the corresponding events are indistinguishable

to a director [21][15][8].

The special case in which a projection P simply erases some of the events in Σ occurs

frequently, for example, due to absence of sensors. This is called natural projection

[21][15][8]. In this case, the event set Σ is partitioned into two disjoint subsets:

Σ = Σo ∪ Σuo

Σo is the set of observable events while Σuo is the set of unobservable events. Thus, a

natural projection P : Σ∗ → Σ∗
o is defined as

P (σ) =





σ if σ ∈ Σo

ε otherwise

The control action of a projection P is extended to traces by

∀s ∈ Σ∗, σ ∈ Σ : P (sσ) = P (s)P (σ)

Since a director takes its control actions based on the observed sequence of events,

it must take identical control action following all traces that have identical projections.

In order to capture this fact, we define a partial-observation director, called P -director,

as a map DP : P [L(G)] → 2Σc such that

∀s ∈ L(G) : |DP [P (s)]| ≤ 1 and ∀s ∈ Le(G) : |DP [P (s)]| = 1.

This means that control action can change only after the occurrence of an observable

event, i.e., when P (s) changes.
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The languages generated and marked by the directed plant under partial observation

are denoted by L(GDP ) and Lm(GDP ) respectively, which are defined as follows:

ε ∈ L(GDP );

[s ∈ L(GDP ), σ ∈ DP [P (s)] ∪ Σu, sσ ∈ L(G)] ⇔ [sσ ∈ L(GDP )];

Lm(GDP ) := L(GDP ) ∩ Lm(G).

7.2.1.2 Nonblocking directed control under partial observation

Under partial observation, it is expected that the existence and synthesis of directors

will be different from those under complete observation, as the case for nonblocking

supervisor.

Given a nonempty specification language K ⊆ Lm(G), it is known [21][15][8] that

there exists a nonblocking supervisor S under partial observation if and only if K is

controllable, i.e., pr(K)Σu ∩ L(G) ⊆ pr(K), relative-closed, i.e., pr(K) ∩ Lm(G) = K,

and observable, i.e.,

∀s ∈ pr(K), σ ∈ Σ : (sσ) /∈ pr(K) and (sσ) ∈ L(G) ⇒ P−1[P (s)]{σ} ∩ pr(K) = ∅.

It is expected that under the same conditions, there exist a nonblocking director under

partial observation.

It is well known, however, that most discrete decision and control problems with par-

tial information are computationally difficult [22], which is also the case for nonblocking

supervisory control under partial observation [26]. The complexities for the existence

and synthesis of nonblocking directors under partial observation are subjects for future

research.

7.2.1.3 Optimal directed control under partial observation

Similarly, we plan to investigate the solvabilities and computational complexities

for the existence and synthesis of optimal directors under partial observation. Further,
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depending on the application, different notions of optimality may be defined and new

algorithms for obtaining new types of optimal director may be developed.

7.2.2 Directed control of timed systems

The above discussion for directed control do not admit an explicit modeling of

time. For analysis of time-dependent systems, timed automata [1] and other timed

DES models [5][18][4] were introduced. For example, the definition of timed automata

provides a simple way to annotate state-transition graphs with timing constraints using

finitely many real-valued clock variables.

Under the framework of directed control, we plan to investigate the properties of

timed discrete event systems. Reachability, nonblocking and optimality under complete

or partial observation are of interest for future research.
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APPENDIX

Algorithm for computing SLIN

Algorithm 10 Given a component (X̂, α̂), the following steps compute SLIN (X̂, α̂).

1. (X0, α0) = (X̂ −Xi, α̂|X̂−Xi
); k = 0.

2. Xk+1 =Xk − V (Xk, αk); αk+1 =αk|Xk+1
.

3. Repeat Step 2 with k = k + 1 until Xk+1 = Xk.

4. Compute S(Xk, αk).

5. For each sub-component (X̃, α̃) ∈ S(Xk, αk), if it is

(a) invariant and nonblocking, then (X̃, α̃) ∈ SLIN (X̂, α̂);

(b) variant and nonblocking, then go to Step 1 with (X0, α0) = (X̃, α̃);

(c) blocking, then (X̃, α̃) /∈ SLIN (X̂, α̂).

Algorithm for computing SLA

Algorithm 11 Given a reference state set Xr ⊆ X and a component (X̂, α̂), the fol-

lowing steps compute SLA((X̂, α̂), Xr).

1. (X0, α0) = (X̂ −Xi, α̂|X̂−Xi
); k = 0.
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2. Xk+1 = Xk − U((Xk, αk), Xr); αk+1 = αk|Xk+1
.

3. Repeat Step 2 with k = k + 1 until Xk+1 = Xk.

4. Compute S(Xk, αk).

5. For each sub-component (X̃, α̃) ∈ S(Xk, αk), if it is singularly Xr-attractable, then

(X̃, α̃) ∈ SLA((X̂, α̂), Xr); otherwise go to Step 1 with (X0, α0) = (X̃, α̃).
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